精英家教网 > 高中数学 > 题目详情
1.用数学归纳法证明:f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}}$(n∈N*)的过程中,从n=k到n=k+1时,f(k+1)比f(k)共增加了2k项.

分析 分别计算出f(k+1)与f(k)的项数,进而作差即得结论.

解答 解:∵f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}}$(n∈N*),
∴f(k)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$共2k项,
f(k+1)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$共2k+1项,
∴f(k+1)比f(k)共增加了2k+1-2k=2k项,
故答案为:2k

点评 本题考查数学归纳法,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)与函数y=-2(x+1)2的开口大小相同,开口方向也相同,f(x)的图象的顶点是(1,2),定义在R上的函数g(x)是奇函数,当x>0时,g(x)=f(x).
(1)求函数g(x)的解析式;
(2)作出函数g(x)的图象,并说明g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)是定义在R上的奇函数,且当x<0时,f(x)=2x2-x+1,则当x>0,f(x)=-2x2-x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=ax+$\frac{b}{x}$(b>0)的图象在点P(1,f(1))处的切线与直线x+2y-1=0垂直,且函数f(x)在区间[$\frac{1}{2}$,+∞)上是单调递增,则b的最大值等于$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{3x}{2x+3}$,数列{an}满足a1=1,an+1=f(an),n∈N*
(1)求数列{an}的通项公式;
(2)令Tn=a1a2+a2a3+a3a4+a4a5+…+a2n-1a2n+a2na2n+1,求Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知y=f(x)是定义在R上的单调函数,任意实数x1,x2满足x1<x2,λ≠-1,α=$\frac{{x}_{1}+λ{x}_{2}}{1+λ}$,β=$\frac{λ{x}_{1}+{x}_{2}}{1+λ}$,若|f(x1)-f(x2)|<|f(α)-f(β)|恒成立,则有(  )
A.0<λ<1B.λ=0C.λ<0且λ≠-1D.λ≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}+2x}$的值域是(  )
A.(0,+∞)B.(2,+∞)C.(0,2)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)在定义域R上是奇函数,且在(0,+∞)上是减函数,f(2)=0,则函数的零点是-2,0,2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC的三边长分别为AB=5,BC=4,AC=3,M 是AB边上的点,P是平面ABC外一点.给出下列四个命题:
①若PA丄平面ABC,则三棱锥P-ABC的四个面都是直角三角形;
②若PM丄平面ABC,且M是AB边中点,则有PA=PB=PC;
③若PC=5,PC丄平面ABC,则△PCM面积的最小值为$\frac{15}{2}$;
④若PC=5,P在平面ABC上的射影是△ABC内切圆的圆心,则点P到平面ABC的距离为$\sqrt{23}$.
其中正确命题的序号是①②④. (把你认为正确命题的序号都填上)

查看答案和解析>>

同步练习册答案