精英家教网 > 高中数学 > 题目详情
已知
a
=(2,-1,1),
b
=(m,-1,1),若
a
b
,则m=
 
分析:由于
a
b
,可得存在实数λ使得
a
b
,利用向量相等即可得出.
解答:解:∵
a
b
,∴存在实数λ使得
a
b

∴(2,-1,1)=λ(m,-1,1),
2=λm
-1=-λ
1=λ
,解得λ=1,m=2
故答案为:2.
点评:本题考查了向量共线定理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A(2,1,1),B(1,1,2),C(2,0,1),则下列说法中正确的是(  )
A、A,B,C三点可以构成直角三角形B、A,B,C三点可以构成锐角三角形C、A,B,C三点可以构成钝角三角形D、A,B,C三点不能构成任何三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-2,1+
3
),B(2,1-
3
),P(-1,1),若直线l过点P且与线段AB有公共点,则直线l的倾斜角的范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2,1),
b
=(0,-1),
c
=
a
+k
b
d
=
a
-
b
,若
c
d
,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2,-1,3),
b
=(-1,4,-2),
c
=(3,2,λ),若
a
b
c
三向量共面,则实数λ等于(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2,1,3),
b
=(-4,5,x),若
a
b
.则x=
 

查看答案和解析>>

同步练习册答案