精英家教网 > 高中数学 > 题目详情

如图,已知直线l:y=2x-4交抛物线y2=4x于A,B两点,试在抛物线AOB这段曲线上求一点P,使△PAB的面积最大,并求出这个最大面积.

P(,1),△PAB的面积最大值为

解析试题分析:由解得A(4,4)、B(1,-2),知|AB|=3.设P(x0,y0)为抛物线AOB这段曲线上一点,d为P点到直线AB的距离,则,∵-2<y0<4,∴(y0-1)2-9<0.
∴d=[9-(y0-1)2].从而当y0=1时,max=,Smax=.
因此,点P在(,1)处时,△PAB的面积取得最大值,最大值为.
考点:直线和抛物线位置关系及点到直线距离
点评:P点还可用与已知直线平行的直线与抛物线相切确定

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分13分) 设椭圆E中心在原点,焦点在x轴上,短轴长为4,点M(2,)在椭圆上,。
(1)求椭圆E的方程;
(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知双曲线与椭圆有相同焦点,且经过点
求该双曲线方程,并求出其离心率、渐近线方程,准线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,椭圆短轴的一个端点与两个焦
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于两点. ①若线段中点的
横坐标为,求斜率的值;②若点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分10分)
求适合下列条件的抛物线的标准方程:
(1)过点(-3,2);
(2)焦点在直线x-2y-4=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
给定抛物线是抛物线的焦点,过点的直线相交于两点,为坐标原点.
(Ⅰ)设的斜率为1,求以为直径的圆的方程;
(Ⅱ)设,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)?
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值? 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题15分)设抛物线和点,.斜率为的直线与抛物线相交不同的两个点.若点恰好为的中点.
(1)求抛物线的方程,
(2) 抛物线上是否存在异于的点,使得经过点的圆和抛物线处有相同的切线.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案