已知,椭圆C以过点A(1,
),两个焦点为(-1,0)(1,0)?
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值?
(Ⅰ)
;(Ⅱ)直线EF的斜率为定值,其值为
?
解析试题分析:(1)设椭圆的右焦点,根据以右焦点为圆心,椭圆长半轴为半径的圆与直线x+
y+3=0相切,即可确定椭圆的几何量,从而可求椭圆的方程;
(2)设直线AE方程代入椭圆方程,利用点A(1,
)在椭圆上,可求E的坐标,利用直线AF的斜率与AE的斜率互为相反数,可求F的坐标,从而可得直线EF的斜率,问题得解.
解:(Ⅰ)由题意,c=1,可设椭圆方程为
?
因为A在椭圆上,所以
,解得
=3,
=
(舍去)?
所以椭圆方程为
----------------------5分
(Ⅱ)设直线AE方程:得
,代入
得![]()
设E(
,
),F(
,
).因为点A(1,
)在椭圆上,所以
,
?
又直线AF的斜率与AE的斜率互为相反数,在上式中以
代
,可得
,
?
所以直线EF的斜率
?
即直线EF的斜率为定值,其值为
? ---------------------12分
考点:本题主要考查了椭圆的标准方程,考查直线与椭圆的位置关系,考查直线斜率的求解,属于中档题。
点评:解题的关键是直线与椭圆方程联立,确定点的坐标,然后结合已知中斜率的关系史得到结论。
科目:高中数学 来源: 题型:解答题
已知双曲线C的中心在原点,抛物线
的焦点是双曲线C的一个焦点,且双曲线经过点
,又知直线
与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若
,求实数k值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知双曲线
的离心率为
,且过点P(
).
(1)求双曲线C的方程;
(2)若直线
与双曲线C恒有两个不同的交点A,B,且
(其中O为原点),求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知椭圆
右焦点为
,M为椭圆的上顶点,O为坐标原点,且
是等腰直角三角形,(1)求椭圆的方程(2)过M分别作直线MA,MB,交椭圆于A,B两点,设两直线的斜率分别为
,且
,证明:直线AB过定点,并求定点的坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线C的中心在原点,抛物线
的焦点是双曲线C的一个焦点,且双曲线经过点
,又知直线
与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若
,求实数k值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com