精英家教网 > 高中数学 > 题目详情

(10分)已知抛物线的顶点是双曲线的中心,而焦点是双曲线的顶点,求抛物线的方程.

解析试题分析:首先根据题意,根据双曲线的方程得到其顶点和焦点坐标,进而结合抛物线的标准方程设出,求解得到。注意焦点的位置不定方程也不定,要讨论。
解:由已知:双曲线的顶点为
若抛物线的焦点为,则,所以抛物线的方程为
若抛物线的焦点为,则,所以抛物线的方程为
考点:本题主要考查了双曲线的简单几何性质的运用,和抛物线方程的求解问题。
点评:解决该试题的关键是通过已知的方程确定出双曲线的焦点坐标和顶点坐标,进而得到抛物线的方程的求解问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分10分)
若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)?
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值? 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)如图所示,直线l与抛物线y2=x交于A(x1,y1),B(x2,y2)两点,与x轴交于点M,且y1y2=-1,

(Ⅰ)求证:点的坐标为
(Ⅱ)求证:OA⊥OB;
(Ⅲ)求△AOB面积的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线的焦点,且离心率等于,直线与椭圆C交于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C的右焦点F是否可以为的垂心?若可以,求出直线的方程;若不行,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题15分)设抛物线和点,.斜率为的直线与抛物线相交不同的两个点.若点恰好为的中点.
(1)求抛物线的方程,
(2) 抛物线上是否存在异于的点,使得经过点的圆和抛物线处有相同的切线.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点。

(I)求椭圆的方程;
(Ⅱ)求线段的长度的最小值;
(Ⅲ)当线段的长度最小时,在椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知焦点在轴上的双曲线的两条渐近线过坐标原点,且两条渐近线与以
 为圆心,1为半径的圆相切,又知的一个焦点与A关于直线对称.
(1)求双曲线的方程;
(2)设直线与双曲线的左支交于两点,另一直线经过 及的中点,求直线轴上的截距的取值范围.

查看答案和解析>>

同步练习册答案