精英家教网 > 高中数学 > 题目详情

(本小题满分13分)如图所示,直线l与抛物线y2=x交于A(x1,y1),B(x2,y2)两点,与x轴交于点M,且y1y2=-1,

(Ⅰ)求证:点的坐标为
(Ⅱ)求证:OA⊥OB;
(Ⅲ)求△AOB面积的最小值。

(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)1

解析试题分析:(Ⅰ)设M(x0,0),直线l方程为x=my+x0代入y2=x得
y2-my-x0=0,y1y2是此方程的两根
∴ x0=-y1y2=1 ①  即M点坐标是(1,0) (4分)
证明:(Ⅱ)∵ y1y2=-1 ∴  x1x2+y1y2=y1y2(y1y2+1)=0,
∴  OA⊥OB  (8分)
(Ⅲ)由方程①得y1+y2=m,y1y2=-1,又|OM|=x0=1,

∴ 当m=0时,S△AOB取最小值1。  (13分)
考点:直线与抛物线位置关系
点评:直线与抛物线位置关系常联立方程,利用韦达定理求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的对称轴为坐标轴,焦点在轴上,离心率分别为椭圆的上顶点和右顶点,且
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆相交于两点,且(其中为坐标原点),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,直线:y=x+m
(1)若与椭圆有一个公共点,求的值;
(2)若与椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知椭圆右焦点为,M为椭圆的上顶点,O为坐标原点,且是等腰直角三角形,(1)求椭圆的方程(2)过M分别作直线MA,MB,交椭圆于A,B两点,设两直线的斜率分别为,且,证明:直线AB过定点,并求定点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为何值时,直线和曲线有两个公共点?有一个公共点?
没有公共点?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)已知抛物线的顶点是双曲线的中心,而焦点是双曲线的顶点,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知抛物线的准线经过双曲线的左焦点,若抛物线与双曲线的一个交点是
(1)求抛物线的方程; (2)求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点.求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案