(12分)已知椭圆右焦点为,M为椭圆的上顶点,O为坐标原点,且是等腰直角三角形,(1)求椭圆的方程(2)过M分别作直线MA,MB,交椭圆于A,B两点,设两直线的斜率分别为,且,证明:直线AB过定点,并求定点的坐标。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图椭圆的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。
(1)求椭圆的离心率;
(2)若平行四边形OCED的面积为, 求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)?
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(10分)已知抛物线的顶点在原点,它的准线过双曲线的一个焦点,并与双曲线的实轴垂直,已知抛物线与双曲线的交点为.
(1)求抛物线的标准方程; (2)求双曲线的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)如图所示,直线l与抛物线y2=x交于A(x1,y1),B(x2,y2)两点,与x轴交于点M,且y1y2=-1,
(Ⅰ)求证:点的坐标为;
(Ⅱ)求证:OA⊥OB;
(Ⅲ)求△AOB面积的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线的焦点,且离心率等于,直线与椭圆C交于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C的右焦点F是否可以为的垂心?若可以,求出直线的方程;若不行,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.
(Ⅰ)求椭圆的离心率;
(Ⅱ)D是过三点的圆上的点,D到直线的最大距离等于椭圆长轴的长,求椭圆的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com