(本小题满分12分)
如图椭圆的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。
(1)求椭圆的离心率;
(2)若平行四边形OCED的面积为, 求椭圆的方程.
(1);(2)
解析试题分析:(1) ∵焦点为F(c, 0), AB斜率为, 故CD方程为y=(x-c). 于椭圆联立后消去y得2x2-2cx-b2="0." ∵CD的中点为G(), 点E(c, -)在椭圆上,
∴将E(c, -)代入椭圆方程并整理得2c2=a2, ∴e =.
(2)由(Ⅰ)知CD的方程为y=(x-c), b="c," a=c.
与椭圆联立消去y得2x2-2cx-c2=0.
∵平行四边形OCED的面积为S=c|yC-yD|=c
=c, ∴c=, a="2," b=. 故椭圆方程为。
考点:本题考查椭圆的简单性质。
点评:求椭圆的离心率是常见题型,其主要思路是:找出a、b、c的一个关系式即可。此题就是根据点斜式表示出直线CD的方程,代入椭圆方程,进而可表示出CD的中点的坐标,则E点的坐标可得,代入椭圆方程即可求得a、b和c的关系式求得离心率e.
科目:高中数学 来源: 题型:解答题
(10分)过直角坐标平面中的抛物线,直线过焦点且与抛物线相交于,两点.
⑴当直线的倾斜角为时,用表示的长度;
⑵当且三角形的面积为4时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题10分)已知,动点满足,设动点的轨迹是曲线,直线:与曲线交于两点.(1)求曲线的方程;
(2)若,求实数的值;
(3)过点作直线与垂直,且直线与曲线交于两点,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,设是圆上的动点,点D是在轴上的投影,M为D上一点,且
(Ⅰ)当的在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题13分)曲线上任意一点M满足, 其中F(-F( 抛物线的焦点是直线y=x-1与x轴的交点, 顶点为原点O.
(1)求,的标准方程;
(2)请问是否存在直线满足条件:①过的焦点;②与交于不同
两点,,且满足?若存在,求出直线的方程;若不
存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知椭圆右焦点为,M为椭圆的上顶点,O为坐标原点,且是等腰直角三角形,(1)求椭圆的方程(2)过M分别作直线MA,MB,交椭圆于A,B两点,设两直线的斜率分别为,且,证明:直线AB过定点,并求定点的坐标。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com