精英家教网 > 高中数学 > 题目详情

(本题10分)已知,动点满足,设动点的轨迹是曲线,直线与曲线交于两点.(1)求曲线的方程;
(2)若,求实数的值;
(3)过点作直线垂直,且直线与曲线交于两点,求四边形面积的最大值.

(1)曲线的方程为;(2)
(3)当时,四边形面积有最大值7.

解析试题分析:(1)设为曲线上任一点,则由,化简整理得
(2)因为根据向量的关系式,,所以所以圆心到直线的距离,所以 
(3)对参数k,分情况讨论,当时,,
时,圆心到直线的距离,所以
,同理得|PQ|,求解四边形的面积。
解:(1)设为曲线上任一点,则由,化简整理得
曲线的方程为              --------------3分 
(2)因为,所以
所以圆心到直线的距离,所以。   -----6分
(3)当时,,
时,圆心到直线的距离,所以
,同理得
所以
=7当且仅当时取等号。
所以当时,
综上,当时,四边形面积有最大值7.           --11
考点:本题主要是考查轨迹方程的求解,已知直线与圆的位置关系的运用。
点评:解决该试题的关键是设出所求点满足的关系式,化简得到轨迹方程,同时利用联立方程组的思想得到长度和面积的表示。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知双曲线的两个焦点为在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知直线经过抛物线的焦点,且与抛物线交于两点,点为坐标原点.

(Ⅰ)证明:为钝角.
(Ⅱ)若的面积为,求直线的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知椭圆的中心在原点,焦点轴上,经过点,且抛物线的焦点为.
(1) 求椭圆的方程;
(2) 垂直于的直线与椭圆交于,两点,当以为直径的圆轴相切时,求直线的方程和圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求与椭圆有共同焦点,且过点(0,2)的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分10分)
求适合下列条件的抛物线的标准方程:
(1)过点(-3,2);
(2)焦点在直线x-2y-4=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图椭圆的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。
(1)求椭圆的离心率;
(2)若平行四边形OCED的面积为, 求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线的焦点,且离心率等于,直线与椭圆C交于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C的右焦点F是否可以为的垂心?若可以,求出直线的方程;若不行,请说明理由.

查看答案和解析>>

同步练习册答案