(本题10分)已知,动点满足,设动点的轨迹是曲线,直线:与曲线交于两点.(1)求曲线的方程;
(2)若,求实数的值;
(3)过点作直线与垂直,且直线与曲线交于两点,求四边形面积的最大值.
(1)曲线的方程为;(2)。
(3)当时,四边形面积有最大值7.
解析试题分析:(1)设为曲线上任一点,则由,化简整理得。
(2)因为根据向量的关系式,,所以,所以圆心到直线的距离,所以
(3)对参数k,分情况讨论,当时,,
当时,圆心到直线的距离,所以
,同理得|PQ|,求解四边形的面积。
解:(1)设为曲线上任一点,则由,化简整理得。
曲线的方程为 --------------3分
(2)因为,所以,
所以圆心到直线的距离,所以。 -----6分
(3)当时,,
当时,圆心到直线的距离,所以
,同理得
所以
=7当且仅当时取等号。
所以当时,
综上,当时,四边形面积有最大值7. --11
考点:本题主要是考查轨迹方程的求解,已知直线与圆的位置关系的运用。
点评:解决该试题的关键是设出所求点满足的关系式,化简得到轨迹方程,同时利用联立方程组的思想得到长度和面积的表示。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知双曲线的两个焦点为、点在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)已知椭圆的中心在原点,焦点,在轴上,经过点,,且抛物线的焦点为.
(1) 求椭圆的方程;
(2) 垂直于的直线与椭圆交于,两点,当以为直径的圆与轴相切时,求直线的方程和圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图椭圆的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。
(1)求椭圆的离心率;
(2)若平行四边形OCED的面积为, 求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线的焦点,且离心率等于,直线与椭圆C交于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C的右焦点F是否可以为的垂心?若可以,求出直线的方程;若不行,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com