精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
如图,设是圆上的动点,点D是轴上的投影,M为D上一点,且
(Ⅰ)当的在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度。

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)设M的坐标为的坐标为 
由已知得在圆上,即C的方程为(6分 )
(Ⅱ)过点(3,0)且斜率为 的直线方程为,设直线与C的交点为
,将直线方程代入C的方程,得

线段AB的长度为
                     (12分)
注:求AB长度时,利用韦达定理或弦长公式求得正确结果,同样给分。
考点:本题考查圆的简单性质;椭圆的简单性质;弦长公式;轨迹方程的求法。
点评:求曲线的轨迹方程是常见题型,其常采用的方法有直接法、定义法、相关点法、参数法. 我们这里用到的是相关点法,所谓相关点法就是根据相关点所满足的方程,通过转换而求动点的轨迹方程. 不管应用哪种方法求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)设椭圆的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且
(1)求椭圆的离心率; (2)若过三点的圆恰好与直线相切,
求椭圆的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知椭圆的中心在原点,焦点轴上,经过点,且抛物线的焦点为.
(1) 求椭圆的方程;
(2) 垂直于的直线与椭圆交于,两点,当以为直径的圆轴相切时,求直线的方程和圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求与椭圆有共同焦点,且过点(0,2)的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分10分)
求适合下列条件的抛物线的标准方程:
(1)过点(-3,2);
(2)焦点在直线x-2y-4=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)抛物线的顶点在坐标原点,焦点在轴的负半轴上,过点作直线与抛物线交于A,B两点,且满足,
(1)求抛物线的方程
(2)当抛物线上的一动点P从A运动到B时,求面积的的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图椭圆的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。
(1)求椭圆的离心率;
(2)若平行四边形OCED的面积为, 求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)已知抛物线的顶点在原点,它的准线过双曲线的一个焦点,并与双曲线的实轴垂直,已知抛物线与双曲线的交点为.
(1)求抛物线的标准方程;    (2)求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知抛物线, 过点引一弦,使它恰在点被平分,求这条弦所在的直线的方程.

查看答案和解析>>

同步练习册答案