精英家教网 > 高中数学 > 题目详情

已知椭圆,直线:y=x+m
(1)若与椭圆有一个公共点,求的值;
(2)若与椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值.

(1) ; (2)

解析试题分析:(1)联立直线与椭圆方程得:

(2)设,由(1)知:
|PQ|==2.  解得:.
考点:本题考查直线与椭圆的位置关系;弦长公式。
点评:熟记并灵活应用弦长公式。在应用弦长公式时一般计算较为繁琐,我们一定要认真、仔细。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知双曲线C与椭圆有相同的焦点,实半轴长为.
(Ⅰ)求双曲线的方程;
(Ⅱ)若直线与双曲线有两个不同的交点,且
(其中为原点),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分10分)
求适合下列条件的抛物线的标准方程:
(1)过点(-3,2);
(2)焦点在直线x-2y-4=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
给定抛物线是抛物线的焦点,过点的直线相交于两点,为坐标原点.
(Ⅰ)设的斜率为1,求以为直径的圆的方程;
(Ⅱ)设,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图椭圆的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。
(1)求椭圆的离心率;
(2)若平行四边形OCED的面积为, 求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)?
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值? 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)如图所示,直线l与抛物线y2=x交于A(x1,y1),B(x2,y2)两点,与x轴交于点M,且y1y2=-1,

(Ⅰ)求证:点的坐标为
(Ⅱ)求证:OA⊥OB;
(Ⅲ)求△AOB面积的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点。

(I)求椭圆的方程;
(Ⅱ)求线段的长度的最小值;
(Ⅲ)当线段的长度最小时,在椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由。

查看答案和解析>>

同步练习册答案