精英家教网 > 高中数学 > 题目详情
设实数a、b使方程x4+ax3+bx2+ax+1=0,求a2+b2的最小值.
考点:基本不等式
专题:不等式的解法及应用
分析:由方程x4+ax3+bx2+ax+1=0,可知x≠0,可化为x2+ax+b+
a
x
+
1
x2
=0
.通过换元,令t=x+
1
x
,得到t2+at+b-2=0,|t|≥2.通过对a和判别式△分类讨论即可得出.
解答: 解:由方程x4+ax3+bx2+ax+1=0,可知x≠0,因此方程可化为x2+ax+b+
a
x
+
1
x2
=0

令t=x+
1
x
,则t2+at+b-2=0,|t|≥2.
设g(t)=t2+at+b-2,(|t|≥2).
-
a
2
<-2
时,即a>4,只需△=a2-4b+8≥0,此时a2+b2≥16.
-
a
2
>2
时,即a<-4,只需△=a2-4b+8≥0,此时a2+b2≥16.
-2≤-
a
2
≤2
时,即-4≤a≤4,只需(-2)2-2a+b-2≤0或22+2a+b-2≤0,
即-2a+b+2≤0或2a+b+2≤0时,此时a2+b2
4
5

∴a2+b2的最小值为
4
5
点评:本题考查了换元法和分类讨论、二次函数的单调性等基础知识与基本技能方法,考查了分析问题和解决问题的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
1
2
(ex-e-x)(e是自然对数的底数)
(1)判断函数f(x)的奇偶性;
(2)求f-1
3
4
)的值;
(3)求使f(x)=a有解的常数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin(4x+
π
2
),求该函数在[0,2π]的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,长度为3的线段AB的端点A、B分别在x,y轴上滑动,点M在线段AB上,且|AM|=2|MB|,
(1)若点M的轨迹为曲线C,求其方程;
(2)过点P(0,1)的直线l与曲线C交于不同两点E、F,N是曲线上不同于E、F的动点,求△NEF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=1-
2
2x+1

(1)判断并证明函数f(x)的奇偶性;
(2)解不等式f(1-m)+f(1-m2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点为F,焦距是2c,左顶点是A,虚轴的上端点是B(0,b),若
BA
BF
=3ac,求该双曲线的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=2×3n+
2
3n-1
,m、n、p属于自然数,且m<n<p,问:数列{an}中是否存在三项am,an,ap,使数列am,an,ap为等差数列?如果存在,求出这三项;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A为大小为60°的二面角α-l-β的棱上一点,长度为a的线段AB在平面α内,且与直线l成45°角,求线段AB与平面β所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项之和Sn=n2+3n+1,则a1+a3+a5等于
 

查看答案和解析>>

同步练习册答案