精英家教网 > 高中数学 > 题目详情
9、已知S={β|k•360°-60°<β<k•360°+60°,k∈Z},P={α|k•180°+30°<α<k•180°+150°,k∈Z},求S∩P.
分析:讨论集合P中的k为偶数和奇数时,分别化简集合P,然后利用图象得到S与P的交集即可.
解答:解:对于集合P,k=2n时,P={a|n•360°+30°<a<n•360°+150°,n∈Z};
k=2n+1时,P={a|n•360°+210°<a<n•360°+330°,n∈Z}={a|n•360°-150°<a<n•360°-30°,n∈Z};
由图易知:S∩P={a|k•360°+30°<a<k•360°+60°,k∈Z}∪{a|k•360°-60°<a<k•360°-30°,k∈Z}
点评:本题属于以终边相同的角的范围为平台,求集合的交集的基础题,也是高考常会考的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的长轴长与短轴长之比为
3
5
,焦点坐标分别为F1(-2,0),F2(2,0).
(1)求椭圆C的标准方程;
(2)已知A(-3,0),B(3,0),P是椭圆C上异于A、B的任意一点,直线AP、BP分别交y轴于M、N,求
OM
ON
的值;
(3)在(2)的条件下,若G(s,0),H(k,0),且
GM
HN
,(s<k),分别以OG、OH为边作两正方形,求此两正方形的面积和的最小值,并求出取得最小值时的G、H点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
,-1)
b
=(
1
2
3
2
)

(1)求证:
a
b

(2)是否存在最小的常数k,对于任意的正数s,t,使
x
=
a
+(t+2s)
b
y
=-k
a
+(
1
t
+
1
s
)
b
垂直?如果存在,求出k的最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的长轴长与短轴长之比为数学公式,焦点坐标分别为F1(-2,0),F2(2,0).
(1)求椭圆C的标准方程;
(2)已知A(-3,0),B(3,0),P是椭圆C上异于A、B的任意一点,直线AP、BP分别交y轴于M、N,求数学公式的值;
(3)在(2)的条件下,若G(s,0),H(k,0),且数学公式,(s<k),分别以OG、OH为边作两正方形,求此两正方形的面积和的最小值,并求出取得最小值时的G、H点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
=(
3
,-1)
b
=(
1
2
3
2
)

(1)求证:
a
b

(2)是否存在最小的常数k,对于任意的正数s,t,使
x
=
a
+(t+2s)
b
y
=-k
a
+(
1
t
+
1
s
)
b
垂直?如果存在,求出k的最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年上海市奉贤区高考数学二模试卷(理科)(解析版) 题型:解答题

已知椭圆C的长轴长与短轴长之比为,焦点坐标分别为F1(-2,0),F2(2,0).
(1)求椭圆C的标准方程;
(2)已知A(-3,0),B(3,0),P是椭圆C上异于A、B的任意一点,直线AP、BP分别交y轴于M、N,求的值;
(3)在(2)的条件下,若G(s,0),H(k,0),且,(s<k),分别以OG、OH为边作两正方形,求此两正方形的面积和的最小值,并求出取得最小值时的G、H点坐标.

查看答案和解析>>

同步练习册答案