精英家教网 > 高中数学 > 题目详情

已知三棱锥S-ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心.
(1)求证:三棱锥S-ABC为正三棱锥.
(2)若二面角H-AB-C的平面角等于30°,SA=数学公式,求三棱锥S-ABC的体积.

证明:(1)如图,AH⊥面SBC,设BH交SC于E,连接AE
∵H是△SBC的垂心
∴BE⊥SC,
∵AH⊥平面SBC,SC⊆平面SBC
∴AH⊥SC,结合BE∩AH=H
∴SC⊥平面ABE,
∵AB⊆平面ABE,
∴AB⊥SC
设S在底面ABC内的射影为O,则SO⊥平面ABC,
∵AB⊆平面ABC
∴AB⊥SO,结合SC∩SO=S
∴AB⊥平面SCO,
∵CO⊆平面SCO
∴CO⊥AB,同理BO⊥AC,
可得O是△ABC的垂心
∵△ABC是正三角形
∴S在底面△ABC的射影O是△ABC的中心
∴三棱锥S-ABC为正三棱锥.…(6分)
(2)由(1)有SA=SB=SC=
延长CO交AB于F,连接EF
∵CF⊥AB,CF是EF在面ABC内的射影,
∴EF⊥AB,
∴∠EFC为二面角H-AB-C的平面角,∠EFC=30°,
∵SC⊥平面ABE,EF⊆平面ABE,
∴EF⊥SC,Rt△EFC中,∠ECF=60°,
可得Rt△SOC中,OC=SCcos60°=
SO=SCsin60°=3,
∴正三角形ABC中,AB=OC=3,

…(12分)
分析:(1)设BH交SC于E,连接AE,根据三垂线定理,结合BE⊥SC,得到AB⊥SC.再作出SO⊥平面ABC,结合三垂线定理的逆定理,得到CO⊥AB,同理BO⊥AC,可得O是△ABC的垂心,因为△ABC是正三角形,所以S在底面△ABC的射影O是正
△ABC的中心,最终得到三棱锥S-ABC为正三棱锥;
(2)延长CO交AB于F,连接EF,根据三垂线定理结合CF⊥AB,得到EF⊥AB,从而∠EFC即为二面角H-AB-C的平面角,从而在Rt△SOC中,∠ECF=90°-30°=60°,根据SC长结合三角函数的定义得到SO、CO的长,最后得到底面边长AB=3,求出底面三角形的面积,利用锥体体积公式可求出三棱锥S-ABC的体积.
点评:本题以一个正三棱锥的证明与计算为载体,考查了线面垂直的判定与性质、三垂线定理及其逆定理和二面角的平面角等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的各顶点都在一个半径为r的球面上,球心O在AB上,SO⊥底面ABC,AC=
2
r
,则球的体积与三棱锥体积之比是(  )
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2;则此棱锥的体积为
2
6
2
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的三条侧棱两两垂直,且SA=2,SB=SC=4,若点P到S、A、B、C这四点的距离都是同一个值,则这个值是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)已知三棱锥S-ABC的所有顶点都在以O为球心的球面上,△ABC是边长为1的正三角形,SC为球O的直径,若三棱锥S-ABC的体积为
2
6
,则球O的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的四个顶点在以O为球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,则当球的表面积为400π时,点O到平面ABC的距离为(  )

查看答案和解析>>

同步练习册答案