精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=-3lnx+ax2+bx(a>0,b∈R),若对任意x>0都有f(x)≥f(3)成立,则(  )
A.lna>-b-1B.lna≥-b-1C.lna≤-b-1D.lna<-b-1

分析 由f(x)≥f(3),知x=3是函数f(x)的极值点,所以f′(3)=0,从而得到b=1-6a,作差:lna-(-b-1)=lna+2-6a,所以构造函数g(x)=lnx+2-6x,通过导数可求得g(x)≤g( $\frac{1}{6}$)<0,即g(x)<0,所以g(a)<0,所以lna<-b-1.

解答 解:f′(x)=2ax+b-$\frac{3}{x}$,
由题意可知,f(x)在x=3处取得最小值,
即x=3是f(x)的极值点;
∴f′(3)=0,∴6a+b=1,即b=1-6a;
作差,lna-(-b-1)=lna-6a+2,
令g(x)=lnx-6x+2,(x>0),则g′(x)=$\frac{1}{x}$-6=$\frac{1-6x}{x}$;
∴当0<x<$\frac{1}{6}$时,g′(x)>0,g(x)在(0,$\frac{1}{6}$)上单调递增;
当x>$\frac{1}{6}$时,g′(x)<0,g(x)在($\frac{1}{6}$,+∞)上单调递减;
∴g(x)≤g($\frac{1}{6}$)=1-ln6<0;
∴g(a)<0,即lna+b+1<0;
故lna<-b-1,
故选:D.

点评 考查最值的概念,极值的定义,函数导数符号和函数单调性的关系,通过构造函数比较两个式子大小的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如图,茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x+y的值为(  )
A.8B.10C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2$\sqrt{2}$,|$\overrightarrow{a}$-$\overline{b}$|=2,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为(  )
A.$\frac{{\sqrt{2}}}{8}$B.$\frac{1}{2}$C.$\frac{{5\sqrt{2}}}{8}$D.$\frac{{\sqrt{2}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知P是椭圆C:$\frac{x^2}{4}+\frac{y^2}{3}$=1上的任一点,Q是与椭圆C共焦点且实轴长为1的双曲线上的任一点,从焦点F1引∠F1QF2的角平分线的垂线,垂足为M,则P,M两点间的最大距离为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+ax2,g(x)=$\frac{1}{x}$+x+b,且直线y=-$\frac{1}{2}$是函数f(x)的一条切线.
(Ⅰ)求a的值;
(Ⅱ)对任意的x1∈[1,$\sqrt{e}$],都存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.方程$(x+y-2)\sqrt{{x^2}+{y^2}-9}=0$表示的曲线是(  )
A.一条直线和一个圆B.一条直线和半个圆
C.两条射线和一个圆D.一条线段和半个圆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.底面半径为3的圆柱的侧面积是圆柱表面积的$\frac{1}{2}$,则该圆柱的高为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设集合A={x|-1<x<2},B={x|2a-1<x<2a+3}.
(1)若A⊆B,求a的取值范围;
(2)若A∩B=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知过抛物线y2=2px(p>0)的焦点,斜率为1的直线交抛物线于A,B两点,则|AB|=8,则该抛物线的方程为y2=4x.

查看答案和解析>>

同步练习册答案