精英家教网 > 高中数学 > 题目详情
11.已知k4+k3+k2+k+1=0,求k2015的值.

分析 利用等比数列的求和公式,可得k5=1,即可求k2015的值.

解答 解:由题意,k≠0,k≠1,
∵k4+k3+k2+k+1=0,
∴$\frac{1-{k}^{5}}{1-k}$=0,
∴k5=1,
∴k2015=(k5403=1.

点评 本题考查等比数列的求和公式,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求抛物线y2=4(x+1)及y2=4(1-x)所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.把下列复数表示成三角形式:(1)6;(2)-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,且有Sn=1-an(n∈N+),点(an,bn)在直线y=nx上,
(1)求数列{an}的通项公式;
(2)求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}是公比大于1的等比数列,Sn是{an}的前n项和.若S3=7,且a1+3,3a2,a3+4构成比差数列.
(1)求{an}的通项公式;
(2)求和Tn=a1a2+a2a3+a3a4+…+anan+1
(3)令bn=log2$\frac{16}{{a}_{n}}$,数列{bn}的前n项和为Sn,当$\frac{{S}_{1}}{1}$+$\frac{{S}_{2}}{2}$+…+$\frac{{S}_{n}}{n}$取得最大值时,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,用4个半径为1的小圆去覆盖一个半径为2的大圆,在大圆内随机取一点,则此点取自阴影部分的概率是$\frac{1}{2}-\frac{1}{π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的通项公式an=2n+3n,则该数列前n项和Sn=2n+1-$\frac{7}{2}$+$\frac{1}{2}×{3}^{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\sqrt{(x+3)^{2}+1}$+$\sqrt{(x-5)^{2}+4}$,则函数f(x)的值域是(  )
A.[$\sqrt{73}$,+∞)B.(+∞,$\sqrt{73}$]C.[-$\sqrt{73}$,$\sqrt{73}$]D.[-$\sqrt{36}$,$\sqrt{36}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f′(x)是f(x)的导函数,如果f′(x)是二次函数,且f′(x)的图象开口向上,顶点坐标为(1,$\sqrt{3}$),那么曲线y=f(x)上任一点的切线的倾斜角α的取值范围是(  )
A.[$\frac{π}{3}$,π)B.($\frac{π}{2},\frac{2π}{3}$]C.[$\frac{π}{3},\frac{π}{2}$)D.(0,$\frac{π}{3}$]

查看答案和解析>>

同步练习册答案