分析 阴影部分的面积=大圆的面积-4个小圆的面积+小圆重合部分的面积,结合几何概型的概率公式进行计算即可.
解答
解∵小圆的半径为1,大圆的半径为2,
∴三角形ABC的面积S=$\frac{1}{2}×1×1=\frac{1}{2}$,扇形ABC的面积S=$\frac{1}{4}π×{1}^{2}$=$\frac{π}{4}$,
4个小圆重合部分的面积=4×[($\frac{π}{4}$-$\frac{1}{2}$)×2]=2π-4.
∴阴影部分的面积=4π-π×4+2π-4=2π-4.
则在大圆内随机取一点,则此点取自阴影部分的概率P=$\frac{2π-4}{π×{2}^{2}}=\frac{2π-4}{4π}$=$\frac{1}{2}-\frac{1}{π}$,
故答案为:$\frac{1}{2}-\frac{1}{π}$.
点评 本题主要考查几何概型的概率的计算,考查了不规则图形的面积计算,解题的关键是得出小圆重合部分的面积=阴影部分的面积.
科目:高中数学 来源: 题型:选择题
| A. | [3,12] | B. | [4,12] | C. | [3,8] | D. | [6,12] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com