精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系xOy中,以x轴为始边作两个锐角α、β,它们的终边分别与单位圆交于A、B两点.已知点A的横坐标为
1
5
;B点的纵坐标为
1
5
2
.则tan(α+β)的值为
3
3
分析:根据A的横坐标求出cosα的值,B的纵坐标求出sinβ的值,进而确定出tanα与tanβ的值,所求式子利用两角和与差的正切函数公式化简,将各自的值代入计算即可求出值.
解答:解:根据题意得:A(
1
5
2
5
),B(
7
5
2
1
5
2
),
∴tanα=2,tanβ=
1
7

则tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
2+
1
7
1-2×
1
7
=3.
故答案为:3
点评:此题考查了两角和与差的正切函数公式,以及任意角的三角函数定义,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△OAB中,点P是线段OB及线段AB延长线所围成的阴影区域(含边界)的任意一点,且
OP
=x
OA
+y
OB
则在直角坐标平面内,实数对(x,y)所示的区域在直线y=4的下侧部分的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1、如图,在直角坐标平面内有一个边长为a,中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为
偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标平面内有一个边长为a、中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为(  )
A、偶函数B、奇函数C、不是奇函数,也不是偶函数D、奇偶性与k有关

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•海珠区一模)如图,在直角坐标平面内,射线OT落在60°的终边上,任作一条射线OA,OA落在∠xOT内的概率是
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标中,一定长m的线段,其端点AB分别在x轴、y轴上滑动,设点M满足(λ是大于0,且不等于1的常数).

试问:是否存在定点E、F,使|ME|、|MB|、|MF|成等差数列?若存在,求出E、F的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案