精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,点在曲线上,直线l过点且与OM垂直,垂足为P.

1)当时,求在直角坐标系下点坐标和l的方程;

2)当MC上运动且P在线段OM上时,求点P在极坐标系下的轨迹方程.

【答案】1l的方程:.(2.

【解析】

1)利用极坐标转换公式可得,进而可得,利用点斜式即可得解;

2)设点P的极坐标为,由题意结合平面几何知识可得,再求得,即可得解.

1)因为C上,当

M的极坐标为,化成直角坐标为,则

所以

又在平面直角坐标系下

l的方程:

2)设点P的极坐标为,因为POM上且AP垂直于OM,点

所以

因为P在线段OM上,且

曲线可转化为

所以当PO重合时,,当PB重合时,

的取值范围是

所以P点轨迹的极坐标方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆:离心率是分别是椭圆的左右焦点,过作斜率为的直线,交椭圆两点,且三角形周长

1)求椭圆的标准方程;

2)若直线分别交轴于不同的两点.如果为锐角,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求证:

2)若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形为等腰梯形,为正方形,平面平面.

(1)求证:平面平面

(2)为线段上一动点,求与平面所成角正弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知棱长为2的正方体中,EDC中点,F在线段上运动,则三棱锥的外接球的表面积最小值为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且经过点是抛物线上一点,过点作抛物线的切线,与椭圆交于两点.

1)求椭圆的方程;

2)若直线平分弦,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx,若任意t∈(a1a),使得ft)>ft+1),则实数a的取值范围为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在微信上查询到近十年全国高考报名人数、录取人数和山东夏季高考报名人数的折线图,其中年的录取人数被遮挡了.他又查询到近十年全国高考录取率的散点图,结合图表中的信息判定下列说法正确的是(

A.全国高考报名人数逐年增加

B.年全国高考录取率最高

C.年高考录取人数约

D.年山东高考报名人数在全国的占比最小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为分别为的右顶点和上顶点,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)若分别是轴负半轴,轴负半轴上的点,且四边形的面积为2,设直线的交点为,求点到直线的距离的最大值.

查看答案和解析>>

同步练习册答案