精英家教网 > 高中数学 > 题目详情
18.若函数f(x)=$\frac{mx-2}{x-2}$在区间(2,+∞)上是增函数,则实数m的取值范围是(-∞,1).

分析 根据f(x)=m+(2m-2)$•\frac{1}{x-2}$ 在区间(2,+∞)上是增函数,可得2m-2<0,由此求得m的范围.

解答 解:函数f(x)=$\frac{mx-2}{x-2}$=$\frac{m(x-2)+2m-2}{x-2}$=m+(2m-2)$•\frac{1}{x-2}$ 在区间(2,+∞)上是增函数,
故2m-2<0,求得 m<1,
故答案为:(-∞,1).

点评 本题主要考查函数的单调性的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0),f(-2)=f(0)=0,f(x)的最小值为-1.
(1)求函数f(x)的解析式;
(2)设g(x)=f(x)-mx,(0≤x≤3)求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)是定义在(0,+∞)上的增函数,且对任意x,y∈(0,+∞),都有f(xy)=f(x)+f(y).
若f(3)=1,f(a)>f(a-1)+2,则a的取值范围(1,$\frac{9}{8}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图1,一座抛物线型拱桥,水面离拱顶8m,水面宽16m,如图2,一艘船的宽度为12m,船的甲板与水面距离为1m,船上两根高为a m的杆垂直于船的甲板,且到甲板左右两边的距离为2m,现船正面正对桥洞(船截面的中轴线与抛物线对称轴重合时)通过该拱桥
(1)当a=3时,该渔船是否能安全通过该拱桥?
(2)若该渔船能安全通过该拱桥,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知1<x<10,令a=lgx,b=log2(lgx),c=2lgx,则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x+$\frac{1}{x}$-4.
(1)求函数f(x)的解析式;
(2)若当x∈[-1,1]时,不等式a•3x-f(3x)≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,角A,B,C的对边分别为a,b,c,cos2$\frac{A}{2}$=$\frac{b+c}{2c}$,则△ABC的形状一定是(  )
A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2}+1}\\{{2^x}}\end{array}}\right.\begin{array}{l}{(x≤0)}\\{(x>0)}\end{array}$,则满足f(x)=4的x的取值是2或$-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x、y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$则目标函数$z=\frac{y+2}{x-5}$的最大值为(  )
A.3B.4C.-3D.$-\frac{1}{2}$

查看答案和解析>>

同步练习册答案