精英家教网 > 高中数学 > 题目详情
8.已知实数x、y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$则目标函数$z=\frac{y+2}{x-5}$的最大值为(  )
A.3B.4C.-3D.$-\frac{1}{2}$

分析 通过作出约束条件的图象△ABC,利用目标函数$z=\frac{y+2}{x-5}$即为过点Q(5,-2)且与△ABC相交的直线的斜率,计算即得结论.

解答 解:依题意,作出约束条件的图象,
其中A(0,1),B(1,0),C(3,4),
目标函数$z=\frac{y+2}{x-5}$即为过点Q(5,-2)且与△ABC相交的直线的斜率,
显然过B、Q两点的直线的斜率z最大,最大值为$\frac{0+2}{1-5}$=-$\frac{1}{2}$,
故选:D.

点评 本题考查简单线性规划,考查数形结合能力,弄清目标函数的意义是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=$\frac{mx-2}{x-2}$在区间(2,+∞)上是增函数,则实数m的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解答下列问题
(1)计算(-$\frac{7}{8}$)0+($\frac{1}{8}$)${\;}^{-\frac{1}{3}}$+$\root{4}{(3-π)^{4}}$的值;
(2)已知2a=5b=100,求$\frac{a+b}{ab}$ 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知不等式组$\left\{\begin{array}{l}{x^2}+\sqrt{2}ax+5≥\frac{1}{3}\\{x^2}+\sqrt{2}ax+5≤\frac{7}{2}\end{array}\right.$有唯一解,则实数a=±$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知圆锥高为h,底面圆半径、锥高、母线长构成等比数列,则圆锥的侧面积是(  )
A.$\frac{1}{3}π{h^2}$B.$\frac{1}{2}π{h^2}$C.πh2D.2πh2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知平面向量$\overrightarrow{α}$,$\overrightarrow{β}$($\overrightarrow{α}$≠$\overrightarrow{β}$)满足|$\overrightarrow{α}$|=$\sqrt{3}$且$\overrightarrow{α}$与$\overrightarrow{β}$-$\overrightarrow{α}$的夹角为150°,则|m$\overrightarrow{α}$+(1-m)$\overrightarrow{β}$|的取值范围是$[\frac{{\sqrt{3}}}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=${log_{0.5}}(4-3x-{x^2})$的递增区间是$(-\frac{3}{2},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用导数求单调区间
f(x)=$\frac{{x}^{2}+3x+1}{{x}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=-4x2+4ax-4a-a2,(a≠0).
(1)若a=-1,求函数f(x)的单调递增区间;
(2)若函数f(x)在区间[0,1]上的最大值为0,存在x∈[2,3],使得m(x2+2x)<f(x)成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案