精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F(1,0),且点(-1,
2
2
)在椭圆C上.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点Q(
5
4
,0),动直线l过点F,且直线l与椭圆C交于A,B两点,证明:
QA
QB
为定值.
(Ⅰ)由题意知:c=1.
根据椭圆的定义得:2a=
(-1-1)2+(
2
2
)
2
+
2
2
,解得a=
2

所以 b2=2-1=1.
所以椭圆C的标准方程为
x2
2
+y2=1

(Ⅱ)证明:当直线l的斜率为0时,A(
2
,0),B(-
2
,0)

则 
QA
QB
=(
2
-
5
4
,0)•(-
2
-
5
4
,0)=-
7
16

当直线l的斜率不为0时,设直线l的方程为:x=ty+1,A(x1,y1),B(x2,y2).
x2
2
+y2=1
x=ty+1
,可得:(t2+2)y2+2ty-1=0.
显然△>0,则
y1+y2=-
2t
t2+2
y1y2=-
1
t2+2
.

因为x1=ty1+1,x2=ty2+1,
所以
QA
QB
=(x1-
5
4
y1)•(x2-
5
4
y2)=(ty1-
1
4
)(ty2-
1
4
)+y1y2

=(t2+1)y1y2-
1
4
t(y1+y2)+
1
16

=-(t2+1)
1
t2+2
+
1
4
t
2t
t2+2
+
1
16

=
-2t2-2+t2
2(t2+2)
+
1
16
=-
7
16
,即 
QA
QB
=-
7
16

综上,
QA
QB
=-
7
16
,即
QA
QB
为定值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案