【题目】平面上两定点
,动点
满
(
为常数).
(Ⅰ)说明动点
的轨迹(不需要求出轨迹方程);
(Ⅱ)当
时,动点
的轨迹为曲线
,过
的直线
与
交于
两点,已知点
,证明:
.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),将曲线
上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线
,以坐标原点
为极点,
轴正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(1)写出
的极坐标方程与直线
的直角坐标方程;
(2)曲线
上是否存在不同的两点
,
(以上两点坐标均为极坐标,
,
),使点
、
到
的距离都为3?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】棱台
的三视图与直观图如图所示.
![]()
(1)求证:平面
平面
;
(2)在线段
上是否存在一点
,使
与平面
所成的角的正弦值为
?若存在,指出点
的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
(
,
).
(1)若展开式中第5项与第7项的系数之比为3∶8,求k的值;
(2)设
(
),且各项系数
,
,
,…,
互不相同.现把这
个不同系数随机排成一个三角形数阵:第1列1个数,第2列2个数,…,第n列n个数.设
是第i列中的最小数,其中
,且i,
.记
的概率为
.求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A、B两人进行一局围棋比赛,A获得的概率为0.8,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计B获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5,6,7表示A获胜;8,9表示B获胜,这样能体现A获胜的概率为0.8.因为采用三局两胜制,所以每3个随机数作为一组.
例如,产生30组随机数:034 743 738 636 964 736 614 698 637 162 332 616 804 560 111 410 959 774 246 762 428 114 572 042 533 237 322 707 360 751,据此估计B获胜的概率为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com