精英家教网 > 高中数学 > 题目详情
设等差数列{an}的前n项和为Sn,已知a3=5,S3=9.
(1)求{an}的首项a1和公差d的值;
(2)若bn=a2n,求数列{bn}的前n项和.
分析:(1)由等差数列的通项公式及求和公式可得,
a1+2d=5
3a1++3d=9
,解方程可求a1,d
(2)由(1)可求bn,然后利用分组求和,结合等差数列与等比数列的求和公式即可求解
解答:解:(1)∵a3=5,S3=9.
a1+2d=5
3a1++3d=9

解可得,a1=1,d=2
(2)an=1+2(n-1)=2n-1
bn=a2n=2n+1-1
sn=22-1+23-1+…+2n+1-1
=
4(1-2n)
1-2
-n

=2n+2-n-4
点评:本题主要考查了等差数列的通项公式、求和公式及等比数列的求和公式的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.若S2k=72,且ak+1=18-ak,则正整数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项之和为Sn满足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S9=81,S6=36,则S3=(  )

查看答案和解析>>

同步练习册答案