精英家教网 > 高中数学 > 题目详情
(2009•上海模拟)已知平面上直线l的方向向量
d
=(3,-4),点O(0,0)和A(4,-2)l上的射影分别是O1和A1,则|
O1A1
|=
4
4
分析:由已知中面上直线l的方向向量
d
=(3,-4),点O(0,0)和A(4,-2),我们易计算出直线l及直线OA的斜率,进而可求出直线OA与直线l的夹角为θ的余弦值,进而根据
O1A1
|=|OA|•cosθ得到答案.
解答:解:∵平面上直线l的方向向量
d
=(3,-4),
∴直线l的斜率k=-
4
3

又∵O(0,0)和A(4,-2)
∴直线OA的斜率k′=-
1
2

|OA|=2
5

设直线OA与直线l的夹角为θ
则tanθ=|
k-k′
1+k•k′
|
=|
-
4
3
+
1
2
1+(-
4
3
)•(-
1
2
)
|
=
1
2

则cosθ=
2
5
5

∴|
O1A1
|=|OA|•cosθ=2
5
2
5
5
=4
故答案为:4
点评:本题考查的知识点是直线的斜率,直线的夹角到直线到直线的角,其中利用tanθ=|
k-k′
1+k•k′
|
计算出两直线的夹角,及|
O1A1
|=|OA|•cosθ是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•上海模拟)在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,与假设中“a是A中的最小数”矛盾!那么对于问题:“证明数集B={x|x=
n
m
,m,n∈N*,并且n<m}
没有最大数”,也可以用反证法证明.我们可以假设x=
n0
m0
是B中的最大数,则可以找到x'=
n0+1
m0+1
n0+1
m0+1
(用m0,n0表示),由此可知x'∈B,x'>x,这与假设矛盾!所以数集B没有最大数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)定义区间(m,n),[m,n],(m,n],[m,n)的长度均为n-m,其中n>m.
(1)若关于x的不等式2ax2-12x-3>0的解集构成的区间的长度为
6
,求实数a的值;
(2)已知关于x的不等式sinxcosx+
3
cos2x+b>0
,x∈[0,π]的解集构成的各区间的长度和超过
π
3
,求实数b的取值范围;
(3)已知关于x的不等式组
7
x+1
>1 
log2x+log2(tx+3t)<2
的解集构成的各区间长度和为6,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)已知全集U=R,集合A={x|x2-2x-3≤0,x∈R},B={x||x-2|<2,x∈R},那么集合A∩B=
{x|0<x≤3}
{x|0<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)已知集合A={z|z=1+i+i2+…+in,n∈N*},B={ω|ω=z1•z2,z1、z2∈A},(z1可以等于z2),从集合B中任取一元素,则该元素的模为
2
的概率为
2
7
2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)已知点列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)顺次为直线y=
x4
上的点,点列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)顺次为x轴上的点,其中x1=a(0<a<1),对任意的n∈N*,点An、Bn、An+1构成以Bn为顶点的等腰三角形.
(1)证明:数列{yn}是等差数列;
(2)求证:对任意的n∈N*,xn+2-xn是常数,并求数列{xn}的通项公式;
(3)对上述等腰三角形AnBnAn+1添加适当条件,提出一个问题,并做出解答.(根据所提问题及解答的完整程度,分档次给分)

查看答案和解析>>

同步练习册答案