精英家教网 > 高中数学 > 题目详情

【题目】下列命题中正确命题的个数是( ) ①对于命题p:x∈R,使得x2+x+1<0,则¬p:x∈R,均有x2+x+1>0;
②命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
③回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为 =1.23x+0.08;
④m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.
A.1
B.3
C.2
D.4

【答案】C
【解析】解:①命题p:x∈R,使得x2+x+1<0,则¬p:x∈R,均有x2+x+1≥0,故①错误;②命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”的逆否命题为:“已知x,y∈R,若x=2且y=1,则x+y=3”是真命题,

∴命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题,故②正确;③设回归直线方程为 =1.23x+a,把样本点的中心(4,5)代入,得a=5﹣1.23×4=0.08,则回归直线方程为 =1.23x+0.08,故③正确;④由m(m+3)﹣6m=0,得m=0或m=3,∴m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充分不必要条件,故④错误.

∴正确命题的个数是2.

故选:C.

直接写出特称命题的否定判断①;写出原命题的逆否命题并判断真假判断②;由已知结合回归直线方程恒过样本中心点求得a,得到回归直线方程判断③;由两直线垂直与系数的关系列式求出m值判断④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax﹣lnx(a∈R,a为常数)
(1)当a=﹣1时,若方程f(x)= 有实根,求b的最小值;
(2)设F(x)=f(x)ex , 若F(x)在区间(0,1]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R,f(﹣2)=2021,对任意x∈(﹣∞,+∞),都有f'(x)<2x成立,则不等式f(x)>x2+2017的解集为(
A.(﹣2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)
D.(﹣∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确命题的个数是 ①对于命题p:x∈R,使得x2+x+1<0,则p:x∈R,均有x2+x+1>0;
②命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
③设ξ~B(n,p),已知Eξ=3,Dξ= ,则n与p值分别为12,
④m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(I)讨论函数的单调性,并证明当x>﹣2时,xex+2+x+4>0;
(Ⅱ)证明:当a∈[0,1)时,函数g(x)= (x>﹣2)有最小值,设g(x)最小值为h(a),求函数h(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面内将点A(2,1)绕原点按逆时针方向旋转 ,得到点B,则点B的坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,曲线C1 (θ为参数),在以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,取相同单位长度的极坐标系中,曲线C2:ρsin( )=1.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)曲线C1上恰好存在三个不同的点到曲线C2的距离相等,分别求这三个点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E的焦点为F,过点F的直线lE交于AC两点

(1)分别过AC两点作抛物线E的切线,求证:抛物线EAC两点处的切线互相垂直

(2)过点F作直线l的垂线与抛物线E交于BD两点,求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xex﹣a(x﹣1)(a∈R)
(1)若函数f(x)在x=0处有极值,求a的值及f(x)的单调区间
(2)若存在实数x0∈(0, ),使得f(x0)<0,求实数a的取值范围.

查看答案和解析>>

同步练习册答案