【题目】已知在直角坐标系xOy中,曲线C1:
(θ为参数),在以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,取相同单位长度的极坐标系中,曲线C2:ρsin(
)=1.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)曲线C1上恰好存在三个不同的点到曲线C2的距离相等,分别求这三个点的极坐标.
【答案】
(1)解:曲线C1:
(θ为参数),两式平方相加可得:x2+y2=4,
曲线C2:ρsin(
)=1,展开可得:
+
=1,化为直角坐标方程:
=0
(2)解:原点O到直线C2:
=0的距离d=
=1=
r,
直线
y+x=0与圆的两个交点A,B满足条件.
联立
,解得
或
,
利用
,分别化为极坐标A
,B
.
设与直线:
=0平行且与圆相切的直线方程为:
y+x+m=0,(m<0).
联立
,化为:4y2+2
my+m2﹣4=0,
令△=12m2﹣16(m2﹣4)=0,解得m=﹣4.
∴
=0,
解得y=
,x=1.
∴切点C
,化为极坐标C
.
∴满足条件的这三个点的极坐标分别为:极坐标A
,B
,C
.
![]()
【解析】(1)曲线C1:
(θ为参数),两式平方相加可得直角坐标方程;曲线C2:ρsin(
)=1,展开可得:
+
=1,把
代入即可化为直角坐标方程.(2)原点O到直线C2:
=0的距离d=1=
r,直线
y+x=0与圆的两个交点A,B满足条件.联立
,解出利用
,分别化为极坐标A,B.
设与直线:
=0平行且与圆相切的直线方程为:
y+x+m=0,(m<0).与圆的方程联立化为:4y2+2
my+m2﹣4=0,令△=0,解得m,即可得出.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤
),x=﹣
为f(x)的零点,x=
为y=f(x)图象的对称轴,且f(x)在(
,
)上单调,则ω的最大值为( )
A.11
B.9
C.7
D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:
+
=1(a>b>0)过点
,且离心率e为
. ![]()
(1)求椭圆E的方程;
(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G
与以线段AB为直径的圆的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确命题的个数是( ) ①对于命题p:x∈R,使得x2+x+1<0,则¬p:x∈R,均有x2+x+1>0;
②命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
③回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为
=1.23x+0.08;
④m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.
A.1
B.3
C.2
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次试验中,有两个试验数据
,统计的结果如下面的表格1.
(1)在给出的坐标系中画出
的散点图; 并判断正负相关;
(2)填写表格2,然后根据表格2的内容和公式求出
对
的回归直线方程
,并估计当
为10时
的值是多少?(公式:
,
)
| 1 | 2 | 3 | 4 | 5 |
| 2 | 3 | 4 | 4 | 5 |
表1
表格2
序号 | | | | |
1 | 1 | 2 | ||
2 | 2 | 3 | ||
3 | 3 | 4 | ||
4 | 4 | 4 | ||
5 | 5 | 5 | ||
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣
)=
,C与l有且仅有一个公共点.
(Ⅰ)求a;
(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=
,求|OA|+|OB|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S﹣ABCD中,底面ABCD为直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分别为SA,SB的中点,E为CD中点,过M,N作平面MNPQ分别与BC,AD交于点P,Q,若
=t
. ![]()
(1)当t=
时,求证:平面SAE⊥平面MNPQ;
(2)是否存在实数t,使得二面角M﹣PQ﹣A的平面角的余弦值为
?若存在,求出实数t的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AB=BC=CA=2
,AA1=4,D为A1B1的中点,E为棱BB1上的点,AB1⊥平面C1DE,且B1,C1,D,E四点在同一球面上,则该球的表面积为( )
A. 9π B. 11π C. 12π D. 14π
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com