精英家教网 > 高中数学 > 题目详情
已知0≤x≤2,则函数y=4x-3×2x-4的最大值是
0
0
分析:令t=2x,则由题意可得 1≤t≤4,且 y=t2-3t-4=(t-
3
2
)
2
-
25
4
,再利用二次函数的性质求得y的最大值.
解答:解:已知0≤x≤2,令t=2x,则 1≤t≤4,且 y=t2-3t-4=(t-
3
2
)
2
-
25
4

故当t=4时,函数y取得最大值为 0,
故答案为 0.
点评:本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,体现了转化、以及换元的数学思想,
属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函f(x)的图象关于点(-
3
4
,0
)对称,且满足f(x)=-f(x+
3
2
),f(0)=2,f(1)=-1,则f(1)+f(2)+f(3)+…+f(2009)的值是(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(0,+∞),若y=
f(x)
x
在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=
f(x)
x2
在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为Ω1,所有“二阶比增函数”组成的集合记为Ω2
(Ⅰ)已知函数f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求实数h的取值范围;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函数值由下表给出,
x a b c a+b+c
f(x) d d t 4
求证:d(2d+t-4)>0;
(Ⅲ)定义集合Φ={f(x)|f(x)∈Ω2,且存在常数k,使得任取x∈(0,+∞),f(x)<k},请问:是否存在常数M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=3x的一些函数值的近似值如表,则方程3x+3x-8=0的实数解x0属于区间(  )
x 0.5 1.25 1.5
3x的绝对值 1.73 3.95 5.20

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州中学高三(下)开学检测数学试卷(解析版) 题型:解答题

已知函数f(x)的定义域为(0,+∞),若y=在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为Ω1,所有“二阶比增函数”组成的集合记为Ω2
(Ⅰ)已知函数f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求实数h的取值范围;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函数值由下表给出,
xabca+b+c
f(x)ddt4
求证:d(2d+t-4)>0;
(Ⅲ)定义集合Φ={f(x)|f(x)∈Ω2,且存在常数k,使得任取x∈(0,+∞),f(x)<k},请问:是否存在常数M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年四川省宜宾市南溪一中高考数学一诊模拟试卷1(文科)(解析版) 题型:选择题

已知定义在R上的函f(x)的图象关于点()对称,且满足f(x)=-f(x+),f(0)=2,f(1)=-1,则f(1)+f(2)+f(3)+…+f(2009)的值是( )
A.1
B.-1
C.2
D.-2

查看答案和解析>>

同步练习册答案