精英家教网 > 高中数学 > 题目详情

【题目】已知为圆上的动点, 为定点,

(1)求线段中点M的轨迹方程;

(2)若,求线段中点N的轨迹方程.

【答案】(12

【解析】

试题分析:(1)设出AP的中点坐标,利用中点坐标公式求出P的坐标,据P在圆上,将P坐标代入圆方程,求出中点的轨迹方程;(2)利用直角三角形的中线等于斜边长的一半得到|PN|=|BN|,利用圆心与弦中点连线垂直弦,利用勾股定理得到,利用两点距离公式求出动点的轨迹方程

试题解析:(1)设中点为,由中点坐标公式可知,点坐标为. ……2

点在圆上,

. ……4

故线段中点的轨迹方程为 ……5

(2)设的中点为

中, ……7

为坐标原点,连结,则

所以 ……9

所以. …….11

中点的轨迹方程为 ……12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知实数满足约束条件:

(1)请画出可行域,并求的最小值;

(2)若取最大值的最优解有无穷多个,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位每天的用电量当天最高气温之间具有线性相关关系,下表是该单位随机统计4天的用电量与当天最高气温的数据.

最高气温()

26

29

31

34

用电量 (度)

22

26

34

38

根据表中数据求出回归直线的方程(其中);

预测某天最高气温为33,该单位当天的用电量(精确到1度).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面是边长为2的等边三角形, 的中点.

(1)求证: 平面

(2)若四边形是正方形,且,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为

(1)若为等边三角形,求椭圆的方程;

(2)若椭圆的短轴为2,过点的直线与椭圆相交于两点,且求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为斜边的等腰直角三角形与等边三角形所在平面互相垂直, 且点满足.

(1)求证:平面平面

(2)求平面 与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a=(12),b=(-2,n),ab的夹角是45°.

(1) 求b

(2) cb同向,且aca垂直,求向量c的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆因夏长酷热多伏旱而得名火炉,八月是重庆最热、用电量最高的月份.下图是沙坪坝区居民八月份用电量(单位:度)的频率分布直方图,其分组区间依次为:

(1)求直方图中的

(2)根据直方图估计八月份用电量的众数和中位数;

(3)在用电量为的四组用户中用分层抽样的方法抽取11户居民,则用电量在的用户应抽取多少户

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一圆经过点,且它的圆心在直线.

I求此圆的方程

II若点为所求圆上任意一点,且点,求线段的中点的轨迹方程.

查看答案和解析>>

同步练习册答案