精英家教网 > 高中数学 > 题目详情
3.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为(  )
A.48B.16C.32D.16$\sqrt{5}$

分析 根据三视图画出此几何体:镶嵌在正方体中的四棱锥,由正方体的位置关系判断底面是矩形,做出四棱锥的高后,利用线面垂直的判定定理进行证明,由等面积法求出四棱锥的高,利用椎体的体积公式求出答案.

解答 解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥O-ABCD,
正方体的棱长为4,O、A、D分别为棱的中点,
∴OD=2$\sqrt{2}$,AB=DC=OC=2$\sqrt{5}$,
做OE⊥CD,垂足是E,
∵BC⊥平面ODC,∴BC⊥OE、BC⊥CD,则四边形ABCD是矩形,
∵CD∩BC=C,∴OE⊥平面ABCD,
∵△ODC的面积S=$4×4-\frac{1}{2}×2×2-\frac{1}{2}×2×4×2$=6,
∴6=$\frac{1}{2}•CD•OE$=$\frac{1}{2}×2\sqrt{5}×OE$,得OE=$\frac{6}{\sqrt{5}}$,
∴此四棱锥O-ABCD的体积V=$\frac{1}{3}{S}_{矩形ABCD}•OE$=$\frac{1}{3}×4×2\sqrt{5}×\frac{6}{\sqrt{5}}$=16,
故选:B.

点评 本题考查三视图求不规则几何体的体积,以及等面积法的应用,由三视图正确复原几何体、并放在对应的正方体中是解题的关键,考查空间想象能力和数形结合思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.(1)求证:cotα=tanα+2cot2α;
(2)请利用(1)的结论证明:cotα=tanα+2tan2α+4cot4α;
(3)请你把(2)的结论推到更一般的情形,使之成为推广后的特例,并加以证明:
(4)化简:tan5°+2tan10°+4tan20°+8tan50°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-$\frac{4}{3}$.
(1)求函数的解析式;
(2)若g(x)=f(x)-k有三个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知方程x2-2(m+2)x+m+2=0有两个不相等的实根,则m的取值范围是(  )
A.m<-2或m>-1B.-2<m<0C.-2<m<-1D.m>-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知三棱锥A-BCD中,AB⊥平面ACD,AC=AD=2,AB=4,CD=2$\sqrt{2}$,则三棱锥A-BCD外接球的表面积与内切球表面积的比为24:1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点A(-3,5,2),则点A关于yOz面对称的点的坐标为(  )
A.(3,5,2)B.(3,-5,2)C.(3,-5,-2)D.(-3,-5,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知某正四面体的内切球体积是1,则该正四面体的外接球的体积是27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在三棱锥A-BCD中,△ABC与△BCD都是边长为6的正三角形,平面ABC⊥平面BCD,则该三棱锥的外接球的体积为(  )
A.5$\sqrt{15}$πB.60πC.60$\sqrt{15}$πD.20$\sqrt{15}$π

查看答案和解析>>

同步练习册答案