精英家教网 > 高中数学 > 题目详情
在△ABC中,若sinB=2sinAcosC,那么△ABC一定是( )
A.等腰直角三角形
B.等腰三角形
C.直角三角形
D.等边三角形
【答案】分析:由三角形的内角和定理得到B=π-(A+C),代入已知等式左侧,利用诱导公式及两角和与差的正弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,利用特殊角的三角函数值得到A=C,利用等角对等边即可得到三角形为等腰三角形.
解答:解:∵sinB=sin[π-(A+C)]=sin(A+C)=sinAcosC+cosAsinC=2sinAcosC,
∴cosAsinC-sinAcosC=sin(C-A)=0,即C-A=0,C=A,
∴a=c,即△ABC为等腰三角形.
故选B
点评:此题考查了两角和与差的正弦函数公式,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若sinB=sin
A+C
2
,则sinB=(  )
A、
3
2
B、
2
2
C、
1
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sinB+cosB=
3
-1
2

(1)求角B的大小;
(2)又若tanA+tanC=3-
3
,且∠A>∠C,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sinB=2sinAcosC,那么△ABC一定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sinB=
4
5
,cosC=
12
13
,则cosA的值是(  )
A、-
16
65
B、
56
65
-
16
65
C、
33
65
D、-
63
65
33
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sinB=sin
A+C2
,则sinB=
 

查看答案和解析>>

同步练习册答案