【题目】已知椭圆: ,圆: 的圆心在椭圆上,点到椭圆的右焦点的距离为.
(1)求椭圆的标准方程;
(2)过点作互相垂直的两条直线,且交椭圆于两点,直线交圆于, 两点,且为的中点,求面积的取值范围.
【答案】(1)(2)
【解析】试题分析:(1)求椭圆标准方程,一般方法为待定系数法,只需列出两个独立条件,解方程组即可:一是圆心在椭圆上,即,二是根据两点间距离公式得,解得, ,(2)设直线: ,直线的方程为,根据几何条件得,所以△的面积等于,先根据点到直线距离公式得,再联立直线方程与椭圆方程,结合韦达定理、弦长公式得,即,最后根据分式函数值域求法得范围
试题解析:(1)圆: 的圆心为,
代入椭圆方程可得,
由点到椭圆的右焦点的距离为,即有,
解得,即,
解得, ,
即有椭圆方程为.
(2)依题意知直线斜率必存在,当斜率为0时,直线: ,
代入圆的方程可得,可得的坐标为,又,
可得的面积为;
当直线斜率不为0时设直线: ,代入圆的方程可得
,
可得中点,
,
此时直线的方程为,代入椭圆方程,可得:
,
设, ,可得, ,
则,
可得的面积为,
设(),可得,
可得,且,
综上可得,△的面积的取值范围是.
科目:高中数学 来源: 题型:
【题目】下列命题正确的个数是( )
①命题“x0∈R,x+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”.
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1 ,正方形的边长为分别是和的中点,是正方形的对角线与的交点,是正方形两对角线的交点,现沿将折起到的位置,使得,连结(如图2).
(1)求证:;
(2)求三棱锥的高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, .
(1)求函数在的最小值;
(2)若函数与的图象恰有一个公共点,求实数的值;
(3)若函数有两个不同的极值点,且,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过曲线C1:-=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,直线F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为( )
A. B. -1 C. +1 D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com