精英家教网 > 高中数学 > 题目详情
如图,已知平行六面体ABC-A1B1C1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?

【答案】分析:(1)根据面面垂直的判定定理,只需证明CO1⊥平面ABCD,因为A1在底面ABCD上的射影为O,从而可证明在平行四边形ACC1A1中,CO1∥A1O.
(2)过E作AC垂线,垂足为G,易证EG⊥平面AC,要EF⊥AD,即EF⊥BC,则需证明GF⊥BC,而FG∥AB,由比例关系可求得F点位置.
解答:解.(1)∵平行六面体底面为正方形,∴A1A∥CC1,∴A1C1∥AC,
又O1,O分别为上下底面中心,∴A1O1∥CO,A1O1=CO,
∴四边形A1O1CO为平行四边形,∴CO1∥A1O.
A1在底面ABCD射影为O,∴A1O⊥平面AC,所以CO1⊥平面AC,
又CO1?平面O1DC,∴平面O1DC⊥平面ABCD.
(2)过E作AC垂线,垂足为G,则EG∥A1O,∴EG⊥平面AC,
若要EF⊥AD,即EF⊥BC,则需GF⊥BC,
∵底面ABCD为正方形,∴FG∥AB,
由A1E=AE,则OG=AG,∴====
∴F为BC的三等分点,靠近B.
点评:本题考查面面垂直、线面垂直的判定,属基础题,相关判定定理是解决有关问题的基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知平行六面体OABC-O1A1B1C1,点G是上底面O1A1B1C1的中心,且
OA
=
a
OC
=
b
OO1
=
c
,则用
a
b
c
表示向量
OG
为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平行六面体ABC-A1B1C1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平行六面体ABCD-A1B1C1D1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?
(3)若∠A1AB=60°,求二面角C-AA1-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平行六面体ABCD-A1B1C1D1(底面是平行四边形的四棱柱)
①求证:平面AB1D1∥平面BDC1
②若平行六面体ABCD-A1B1C1D1各棱长相等且AB⊥平面BCC1B1,E为CD的中点,AC1∩BD1=0,求证:OE⊥平面ABC1D1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平行六面体ABCD-A1B1C1D1的底面为正方形,O1,O分别为上、下底面的中心,且A1在底面ABCD上的射影是O.
(1)求证:面O1DC⊥面ABCD;
(2)若∠A1AB=60°,求二面角C-AA1-B大小;
(3)若点E,F分别在棱AA1,BC上,且AE=2EA1,问点F在何处时,EF⊥AD.

查看答案和解析>>

同步练习册答案