精英家教网 > 高中数学 > 题目详情
2.已知R是实数集,集合A={x|($\frac{1}{2}$)2x+1≤$\frac{1}{16}$},B={x|log4(3-x)<0.5},则(∁RA)∩B=(  )
A.(1,2)B.(1,2)C.(1,3)D.(1,1.5)

分析 解不等式化简集合A、B,根据补集与交集的定义计算即可.

解答 解:集合A={x|($\frac{1}{2}$)2x+1≤$\frac{1}{16}$}={x|2x+1≥4}={x|x≥$\frac{3}{2}$},
B={x|log4(3-x)<0.5}={x|0<3-x<2}={x|1<x<3},
∴∁RA={x|x<$\frac{3}{2}$},
∴(∁RA)∩B={x|1<x<$\frac{3}{2}$}=(1,1.5).
故选:D.

点评 本题考查了集合的化简与运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).
(1)若f(x)=ax3+1,求a的取值范围;
(2)若f(x)是周期函数,证明:f(x)是常值函数;
(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知平面向量$\overrightarrow{a}$=(m,n),平面向量$\overrightarrow{b}$=(p,q),(其中m,n,p,q∈Z).
定义:$\overrightarrow{a}$?$\overrightarrow{b}$=(mp-nq,mq+np).若$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,1),则$\overrightarrow{a}$?$\overrightarrow{b}$=(0,5);
若$\overrightarrow{a}$?$\overrightarrow{b}$=(5,0),且|$\overrightarrow{a}$|<5,|$\overrightarrow{b}$|<5,则$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(2,-1)(写出一组满足此条件的$\overrightarrow{a}$和$\overrightarrow{b}$即可).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={1,2,3,4,5},B=(2,4,6),P=A∩B,则集合P的子集有(  )
A.2个B.4个C.6个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{lnx+1}{{e}^{x}}$(e是自然对数的底数),h(x)=1-x-xlnx.
(1)求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求h(x)的单调区间;
(3)设g(x)=xf′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设命题p:f(x)=$\frac{2}{x-m}$在区间(1,+∞)上是减函数;命题q:2x-1+2m>0对任意x∈R恒成立.若(¬p)∧q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知sinα=3sin(α+$\frac{π}{6}$),则tan(α+$\frac{π}{12}$)=2$\sqrt{3}$-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示的流程图中,输出的S为$\frac{25}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.刘老师是一位经验丰富的高三理科班班主任,经长期研究,他发现高中理科班的学生的数学成绩(总分150分)与理综成绩(物理、化学与生物的综合,总分300分)具有较强的线性相关性,以下是刘老师随机选取的八名学生在高考中的数学得分x与理综得分y(如表):
学生编号12345678
数学分数x52648796105123132141
理综分数y112132177190218239257275
参考数据及公式:$\widehaty=a+bx,b=\frac{{{x_1}{y_1}+{x_2}{y_2}+…+{x_n}{y_n}-n\overline x\overline y}}{{x_1^2+x_2^2+…+x_n^2-n{{\overline x}^2}}}≈1.83,\overline x=100,\overline y=200$.
(1)求出y关于x的线性回归方程;
(2)若小汪高考数学110分,请你预测他理综得分约为多少分?(精确到整数位);
(3)小金同学的文科一般,语文与英语一起能稳定在215分左右.如果他的目标是在高考总分冲击600分,请你帮他估算他的数学与理综大约分别至少需要拿到多少分?(精确到整数位).

查看答案和解析>>

同步练习册答案