精英家教网 > 高中数学 > 题目详情
12.设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).
(1)若f(x)=ax3+1,求a的取值范围;
(2)若f(x)是周期函数,证明:f(x)是常值函数;
(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.

分析 (1)直接由f(x1)-f(x2)≤0求得a的取值范围;
(2)若f(x)是周期函数,记其周期为Tk,任取x0∈R,则有f(x0)=f(x0+Tk),证明对任意x∈[x0,x0+Tk],f(x0)≤f(x)≤f(x0+Tk),可得f(x0)=f(x0+nTk),n∈Z,再由…∪[x0-3Tk,x0-2Tk]∪[x0-2Tk,x0-Tk]∪[x0-Tk,x0]∪[x0,x0+Tk]∪[x0+Tk,x0+2Tk]∪…=R,可得对任意x∈R,f(x)=f(x0)=C,为常数;
(3)分充分性及必要性证明.类似(2)证明充分性;再证必要性,然后分类证明.

解答 (1)解:由f(x1)≤f(x2),得f(x1)-f(x2)=a(x13-x23)≤0,
∵x1<x2,∴x13-x23<0,得a≥0.
故a的范围是[0,+∞);
(2)证明:若f(x)是周期函数,记其周期为Tk,任取x0∈R,则有
f(x0)=f(x0+Tk),
由题意,对任意x∈[x0,x0+Tk],f(x0)≤f(x)≤f(x0+Tk),
∴f(x0)=f(x)=f(x0+Tk).
又∵f(x0)=f(x0+nTk),n∈Z,并且
…∪[x0-3Tk,x0-2Tk]∪[x0-2Tk,x0-Tk]∪[x0-Tk,x0]∪[x0,x0+Tk]∪[x0+Tk,x0+2Tk]∪…=R,
∴对任意x∈R,f(x)=f(x0)=C,为常数;
(3)证明:充分性:若f(x)是常值函数,记f(x)=c1,设g(x)的一个周期为Tg,则
h(x)=c1•g(x),则对任意x0∈R,
h(x0+Tg)=c1•g(x0+Tg)=c1•g(x0)=h(x0),
故h(x)是周期函数;
必要性:若h(x)是周期函数,记其一个周期为Th
若存在x1,x2,使得f(x1)>0,且f(x2)<0,则由题意可知,
x1>x2,那么必然存在正整数N1,使得x2+N1Tk>x1
∴f(x2+N1Tk)>f(x1)>0,且h(x2+N1Tk)=h(x2).
又h(x2)=g(x2)f(x2)<0,而
h(x2+N1Tk)=g(x2+N1Tk)f(x2+N1Tk)>0≠h(x2),矛盾.
综上,f(x)>0恒成立.
由f(x)>0恒成立,
任取x0∈A,则必存在N2∈N,使得x0-N2Th≤x0-Tg
即[x0-Tg,x0]⊆[x0-N2Th,x0],
∵…∪[x0-3Tk,x0-2Tk]∪[x0-2Tk,x0-Tk]∪[x0-Tk,x0]∪[x0,x0+Tk]∪[x0+Tk,x0+2Tk]∪…=R,
∴…∪[x0-2N2Th,x0-N2Th]∪[x0-N2Th,x0]∪[x0,x0+N2Th]∪[x0+N2Th,x0+2N2Th]∪…=R.
h(x0)=g(x0)•f(x0)=h(x0-N2Th)=g(x0-N2Th)•f(x0-N2Th),
∵g(x0)=M≥g(x0-N2Th)>0,f(x0)≥f(x0-N2Th)>0.
因此若h(x0)=h(x0-N2Th),必有g(x0)=M=g(x0-N2Th),且f(x0)=f(x0-N2Th)=c.
而由(2)证明可知,对任意x∈R,f(x)=f(x0)=C,为常数.
综上,必要性得证.

点评 本题考查抽象函数及其应用,考查逻辑思维能力与理论运算能力考查分类讨论的数学思想方法,题目设置难度过大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在(x2-4)5的展开式中,含x6的项的系数为(  )
A.20B.40C.80D.160

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知全集U=R,集合A={x|x2-3x≤0},B={x|a≤x≤a+2,a∈R}.
(1)当a=1时,求A∩B;
(2)当集合A,B满足B⊆A时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=ax3-2x2+1,若f(x)存在唯一的零点x0,且x0<0,则实数a的取值范围为(  )
A.(2,+∞)B.(0,$\frac{\sqrt{6}}{9}$)C.(-∞,-$\frac{4\sqrt{6}}{9}$)D.($\frac{4\sqrt{6}}{9}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sin2x+cos2x.
(1)当x∈[0,$\frac{π}{4}$]时,求f(x)的取值范围;
(2)求函数y=f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一个递增的等差数列{an}的前三项的和为-3,前三项的积为8.数列$\{\frac{b_n}{a_n}\}$的前n项和为${S_n}={2^{n+1}}-2$.
(1)求数列{an}的通项公式.
(2)求数列$\{\frac{b_n}{a_n}\}$的通项公式.
(3)是否存在一个等差数列{cn},使得等式${b_n}={c_{n+1}}•{2^{n+1}}-{c_n}•{2^n}$对所有的正整数n都成立.若存在,求出所有满足条件的等差数列{cn}的通项公式,并求数列{bn}的前n项和Tn;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,直三棱柱ABC-A1B1C1中,AB=AC=AA1,AB⊥AC,M是CC1的中点,N是BC的中点,点P在线段A1B1上运动.
(Ⅰ)求证:PN⊥AM;
(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为 $\left\{{\begin{array}{l}{x=1+\frac{t}{2}}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$( t为参数).
(Ⅰ)写出曲线C的直角坐标方程与直线l的普通方程;
(Ⅱ)设直线l与曲线C相交于A,B两点,求A,B两点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知R是实数集,集合A={x|($\frac{1}{2}$)2x+1≤$\frac{1}{16}$},B={x|log4(3-x)<0.5},则(∁RA)∩B=(  )
A.(1,2)B.(1,2)C.(1,3)D.(1,1.5)

查看答案和解析>>

同步练习册答案