精英家教网 > 高中数学 > 题目详情
11.在(x2-4)5的展开式中,含x6的项的系数为(  )
A.20B.40C.80D.160

分析 Tr+1=${C}_{5}^{r}({x}^{2})^{5-r}(-4)^{r}$=(-4)r${C}_{5}^{r}{x}^{10-2r}$,令10-2r=6,解得r=2,由此能求出含x6的项的系数.

解答 解:∵(x2-4)5
∴Tr+1=${C}_{5}^{r}({x}^{2})^{5-r}(-4)^{r}$=(-4)r${C}_{5}^{r}{x}^{10-2r}$,
令10-2r=6,解得r=2,
∴含x6的项的系数为(-4)2C${\;}_{5}^{2}$=160.
故选:D.

点评 本题考查二项展开式中含x6的项的系数的求法,考查二项式定理、通项公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知一个等比数列首项为1,项数是偶数,其奇数项之和为341,偶数项之和为682,则这个数列的项数为(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如表.
组号年龄访谈人数愿意使用
1[18,28)44
2[28,38)99
3[38,48)1615
4[48,58)1512
5[58,68)62
(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?
年龄不低于48岁的人数年龄低于48岁的人数合计
愿意使用的人数
不愿意使用的人数
合计
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(d+b)}$,其中:n=a+b+c+d.
P(k2≥k00.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线$\left\{\begin{array}{l}{x=4t}\\{y=-3+3t}\end{array}\right.$(t为参数)与圆$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数)的位置关系是相离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{{\begin{array}{l}{-x+4,x≤2}\\{{a^x}+2a+1,x>2}\end{array}}$,其中a>0且a≠1.若a=$\frac{1}{2}$时方程f(x)=b有两个不同的实根,则实数b的取值范围是(2,$\frac{9}{4}$);若f(x)的值域为[2,+∞),则实数a的取值范围是[$\frac{1}{2}$,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.△ABC 中,若$\overrightarrow{AC}•\overrightarrow{BC}-\overrightarrow{AB}•\overrightarrow{AC}$=0,则△ABC 是(  )
A.直角三角形B.等腰三角形C.等边三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若扇形的半径为6cm,所对的弧长为2πcm,则这个扇形的面积是(  )
A.12πcm2B.6 cm2C.6πcm2D.4 cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,4},B={x|a+x=1},若A∩B=B,则实数a组成的集合是(  )
A.{0}B.{0,1}C.{0,-3}D.{0,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).
(1)若f(x)=ax3+1,求a的取值范围;
(2)若f(x)是周期函数,证明:f(x)是常值函数;
(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.

查看答案和解析>>

同步练习册答案