精英家教网 > 高中数学 > 题目详情
1.已知一个等比数列首项为1,项数是偶数,其奇数项之和为341,偶数项之和为682,则这个数列的项数为(  )
A.4B.6C.8D.10

分析 先求出公比q=$\frac{682}{341}$=2,再利用等比数列前n项和公式能求出这个数列的项数.

解答 解:∵一个等比数列首项为1,项数是偶数,其奇数项之和为341,偶数项之和为682,
∴公比q=$\frac{682}{341}$=2,
∴${S}_{n}=\frac{1-{2}^{n}}{1-2}$=341+682,
解得n=10.
故选:D.

点评 本题考查等比数列的项数的求法,考查等比数列性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知a>0,b>0,a+b=1,则$\frac{1}{a}$+$\frac{4}{b}$的最小值是(  )
A.4B.5C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列结论正确的是(  )
A.当x>0且x≠1时,lgx$+\frac{1}{lgx}$≥2B.6$-x-\frac{4}{x}$的最大值是2
C.$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的最小值是2D.当x∈(0,π)时,sinx$+\frac{4}{sinx}$≥5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.下面(A)(B)(C)(D)为四个平面图形:
(1)数出每个平面图形的交点数、边数、区域数,并将下表补充完整:
  交点数边数 区域数 
(A)  4 5 2
 (B) 5 8 
 (C)  12 5
 (D)  15 
(2)观察表格,若记一个平面图形的交点数、边数、区域数分别为E、F、G,试猜想E、F、G之间的数量关系(不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数$f(x)=x-\sqrt{2}sinx$在区间[0,π]上的最大、最小值分别为(  )
A.π,0B.$\frac{π}{2}-\sqrt{2}\;,0$C.$π\;,\frac{π}{4}-1$D.$0\;,\;\frac{π}{4}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,且${a_n}>0,{a_n}{S_n}={({\frac{1}{2}})^{2n}}({n∈{N^*}})$
(1)若bn=1+log2anSn,求数列{bn}的前n项和Tn
(2)若$0<{θ_n}<\frac{π}{2},{2^n}{a_n}=tan{θ_n}$,求证:数列{θn}是等比数列,并求其通项公式;
(3)记${c_n}=|{{a_1}-\frac{1}{2}}|+|{{a_2}-\frac{1}{2}}|+…+|{{a_n}-\frac{1}{2}}|$,若对任意的n∈N*,cn≥m恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,其中F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=$\frac{5}{3}$
(1)求椭圆C1的方程;
(2)若过点D(4,0)的直线l与C1交于不同的两点A,B,且A在DB之间,试求△AOD与△BOD面积比值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.甲乙丙丁四个好朋友去郊外旅游,现有A、B辆车可供使用,A车最多剩下三个位置,B车最多剩下两个位置.四个人随机乱坐,则甲、乙两人分别坐在同一辆车上的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在(x2-4)5的展开式中,含x6的项的系数为(  )
A.20B.40C.80D.160

查看答案和解析>>

同步练习册答案