13£®ÔÚÖ±½Ç×ø±êϵxOy£¬ÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÆäÖÐF2Ò²ÊÇÅ×ÎïÏßC2£ºy2=4xµÄ½¹µã£¬µãMΪC1ÓëC2ÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬ÇÒ|MF2|=$\frac{5}{3}$
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©Èô¹ýµãD£¨4£¬0£©µÄÖ±ÏßlÓëC1½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬ÇÒAÔÚDBÖ®¼ä£¬ÊÔÇó¡÷AODÓë¡÷BODÃæ»ý±ÈÖµµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Çó³öMµÄ×ø±ê£¬´úÈëÍÖÔ²·½³ÌÁз½³Ì×éµÃ³öa£¬b£»
£¨2£©Éèl·½³Ì£ºx=my+4£¬ÁªÁ¢·½³Ì×飬ÀûÓøùÓëϵÊýµÄ¹ØÏµµÃ³öA£¬B×Ý×ø±êµÄ¹ØÏµ£¬Éè¦Ë=$\frac{{S}_{¡÷AOD}}{{S}_{¡÷BOD}}$=$\frac{{y}_{1}}{{y}_{2}}$£¬Ôòy1=y2¦Ë£¬´úÈë¸ùÓëϵÊýµÄ¹ØÏµµÃ³öm2¹ØÓڦ˵ĺ¯Êý£¬¸ù¾Ým2µÄ·¶Î§¼´¿ÉµÃ³ö¦ËµÄ·¶Î§£®

½â´ð ½â£º£¨1£©ÒÀÌâÒâÖªF2£¨1£¬0£©£¬¡àF1£¨-1£¬0£©£¬
ÉèM£¨x1£¬y1£©£¬Ôò|MF2|=x1+1=$\frac{5}{3}$£¬¼´x1=$\frac{2}{3}$£¬
¡ày1=2$\sqrt{{x}_{1}}$=$\frac{2\sqrt{6}}{3}$£¬¼´M£¨$\frac{2}{3}$£¬$\frac{2\sqrt{6}}{3}$£©£¬
¡à$\left\{\begin{array}{l}{{a}^{2}-{b}^{2}=1}\\{\frac{£¨\frac{2}{3}£©^{2}}{{a}^{2}}+\frac{£¨\frac{2\sqrt{6}}{3}£©^{2}}{{b}^{2}}=1}\end{array}\right.$£¬½âµÃa2=4£¬b2=3£¬???
¹ÊÍÖÔ²C1µÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£®
£¨2£©ÒÀÌâÒâÖªÖ±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0£¬ÉèlµÄ·½³ÌΪx=my+4£¬
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{x=my+4}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨3m2+4£©y2+24my+36=0£¬
¡à¡÷=576m2-144£¨3m2+4£©£¾0£¬½âµÃm2£¾4£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôòy1+y2=-$\frac{24m}{3{m}^{2}+4}$£¬y1y2=$\frac{36}{3{m}^{2}+4}$£®
Éè¦Ë=$\frac{{S}_{¡÷AOD}}{{S}_{¡÷BOD}}$=$\frac{{y}_{1}}{{y}_{2}}$£¬Ôòy1=y2¦Ë£¬ÇÒ0£¼¦Ë£¼1£®
°Ñy1=y2¦Ë´úÈëy1+y2=-$\frac{24m}{3{m}^{2}+4}$£¬y1y2=$\frac{36}{3{m}^{2}+4}$¿ÉµÃ£º
$\left\{\begin{array}{l}{£¨¦Ë+1£©{y}_{2}=-\frac{24m}{3{m}^{2}+4}}\\{{¦Ë{y}_{2}}^{2}=\frac{36}{3{m}^{2}+4}}\end{array}\right.$£¬ÏûÈ¥y2µÃ$\frac{£¨¦Ë+1£©^{2}}{¦Ë}$=$\frac{16{m}^{2}}{3{m}^{2}+4}$£¬
¼´m2=$\frac{4£¨¦Ë+1£©^{2}}{10¦Ë-3{¦Ë}^{2}-3}$£¬
¡à$\frac{4£¨¦Ë+1£©^{2}}{10¦Ë-3{¦Ë}^{2}-3}$£¾4£¬½âµÃ$\frac{1}{3}£¼¦Ë£¼1$»ò1£¼¦Ë£¼3£¨Éᣩ£®
¡à¡÷AODÓë¡÷BODÃæ»ý±ÈÖµµÄȡֵ·¶Î§ÊÇ£¨$\frac{1}{3}$£¬1£©£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=x2-2ax+2b
£¨1£©Èôa£¬b¶¼ÊÇ´Ó0£¬1£¬2£¬3ËĸöÊýÖÐÈÎÒâÈ¡µÄÒ»¸öÊý£¬Çóº¯Êýf£¨x£©ÓÐÁãµãµÄ¸ÅÂÊ£»
£¨2£©Èôa£¬b¶¼ÊÇ´ÓÇø¼ä[0£¬3]ÖÐÈÎÈ¡µÄÒ»¸öÊý£¬Çóf£¨1£©£¼0³ÉÁ¢Ê±µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊ$\frac{\sqrt{5}}{3}$£¬F£¬AΪÍÖÔ²CµÄÓÒ½¹µãºÍÓÒ¶¥µã£¬B£¨0£¬b£©£¬ÇÒ$\frac{\sqrt{5}}{|OF|}$$+\frac{2}{|OA|}$=$\frac{12{e}^{2}}{|OB{|}^{2}}$
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèMÊǵÚÈýÏóÏÞÄÚÇÒÍÖÔ²ÉϵÄÒ»¸ö¶¯µã£¬Ö±ÏßMBÓëxÖá½»ÓÚµãP£¬Ö±ÏßMAÓëyÖá½»ÓÚµãQ£¬ÇóÖ¤£ºËıßÐÎABPQµÄÃæ»ýΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªÒ»¸öµÈ±ÈÊýÁÐÊ×ÏîΪ1£¬ÏîÊýÊÇżÊý£¬ÆäÆæÊýÏîÖ®ºÍΪ341£¬Å¼ÊýÏîÖ®ºÍΪ682£¬ÔòÕâ¸öÊýÁеÄÏîÊýΪ£¨¡¡¡¡£©
A£®4B£®6C£®8D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÇúÏßy=-x3+3x2Ôڵ㣨1£¬2£©´¦µÄÇÐÏß·½³ÌΪ£¨¡¡¡¡£©
A£®y=-3x+5B£®y=3x-1C£®y=3x+5D£®y=2x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èôn¡ÊN*£¬ÇÒn¡Ü19£¬Ôò£¨20-n£©£¨21-n£©¡­£¨100-n£©µÈÓÚ£¨¡¡¡¡£©
A£®$A_{100-n}^{80}$B£®$A_{100-n}^{20-n}$C£®$A_{100-n}^{81}$D£®$A_{20-n}^{81}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÆ½ÃæÏòÁ¿$\overrightarrow a=£¨1£¬x£©£¬\overrightarrow b=£¨2x+3£¬-x£©$  £¨x¡ÊN£©
£¨1£©Èô$\overrightarrow{a}$Óë$\overrightarrow{b}$´¹Ö±£¬Çóx£»
£¨2£©Èô$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬Çó|$\overrightarrow{a}$-$\overrightarrow{b}$|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Ëæ×ÅÍøÂçµÄ·¢Õ¹£¬ÈËÃÇ¿ÉÒÔÔÚÍøÂçÉϹºÎï¡¢ÍæÓÎÏ·¡¢ÁÄÌì¡¢µ¼º½µÈ£¬ËùÒÔÈËÃǶÔÉÏÍøÁ÷Á¿µÄÐèÇóÔ½À´Ô½´ó£®Ä³µçÐÅÔËÓªÉÌÍÆ³öÒ»¿îеġ°Á÷Á¿°ü¡±Ìײͣ®ÎªÁ˵÷²é²»Í¬ÄêÁäµÄÈËÊÇ·ñÔ¸ÒâÑ¡Ôñ´Ë¿î¡°Á÷Á¿°ü¡±Ìײͣ¬Ëæ»ú³éÈ¡50¸öÓû§£¬°´ÄêÁä·Ö×é½øÐзÃ̸£¬Í³¼Æ½á¹ûÈç±í£®
×éºÅÄêÁä·Ã̸ÈËÊýÔ¸ÒâʹÓÃ
1[18£¬28£©44
2[28£¬38£©99
3[38£¬48£©1615
4[48£¬58£©1512
5[58£¬68£©62
£¨¢ñ£©ÈôÔÚµÚ2¡¢3¡¢4×éÔ¸ÒâÑ¡Ôñ´Ë¿î¡°Á÷Á¿°ü¡±Ìײ͵ÄÈËÖУ¬Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡12ÈË£¬Ôò¸÷×éÓ¦·Ö±ð³éÈ¡¶àÉÙÈË£¿
£¨¢ò£©Èô´ÓµÚ5×éµÄ±»µ÷²éÕß·Ã̸ÈËÖÐËæ»úѡȡ2È˽øÐÐ×·×Ùµ÷²é£¬Çó2ÈËÖÐÖÁÉÙÓÐ1ÈËÔ¸ÒâÑ¡Ôñ´Ë¿î¡°Á÷Á¿°ü¡±Ìײ͵ĸÅÂÊ£®
£¨¢ó£©°´ÒÔÉÏͳ¼ÆÊý¾ÝÌîдÏÂÃæ2¡Á2ÁÐÁª±í£¬²¢ÅжÏÒÔ48ËêΪ·Ö½çµã£¬ÄÜ·ñÔÚ·¸´íÎó²»³¬¹ý1%µÄǰÌáÏÂÈÏΪ£¬ÊÇ·ñÔ¸ÒâÑ¡Ôñ´Ë¿î¡°Á÷Á¿°ü¡±ÌײÍÓëÈ˵ÄÄêÁäÓйأ¿
ÄêÁä²»µÍÓÚ48ËêµÄÈËÊýÄêÁäµÍÓÚ48ËêµÄÈËÊýºÏ¼Æ
Ô¸ÒâʹÓõÄÈËÊý
²»Ô¸ÒâʹÓõÄÈËÊý
ºÏ¼Æ
²Î¿¼¹«Ê½£º${k^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨d+b£©}$£¬ÆäÖУºn=a+b+c+d£®
P£¨k2¡Ýk0£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÈôÉÈÐεİ뾶Ϊ6cm£¬Ëù¶ÔµÄ»¡³¤Îª2¦Ðcm£¬ÔòÕâ¸öÉÈÐεÄÃæ»ýÊÇ£¨¡¡¡¡£©
A£®12¦Ðcm2B£®6 cm2C£®6¦Ðcm2D£®4 cm2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸