·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊ$\frac{\sqrt{5}}{3}$£¬F£¬AΪÍÖÔ²CµÄÓÒ½¹µãºÍÓÒ¶¥µã£¬B£¨0£¬b£©£¬ÇÒ$\frac{\sqrt{5}}{|OF|}$$+\frac{2}{|OA|}$=$\frac{12{e}^{2}}{|OB{|}^{2}}$£¬Áгö·½³Ì×飬Çó³öa=3£¬b=2£¬c=$\sqrt{5}$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©Çó³öA£¨3£¬0£©£¬B£¨0£¬2£©£¬ÉèM£¨m£¬n£©£¬£¨m£¼0£¬n£¼0£©£¬Ôò9n2+4m2=36£¬Ö±ÏßBMµÄ·½³ÌΪ$y=\frac{n-2}{m}x+2$£¬Áîy=0£¬µÃxP=$\frac{2m}{2-n}$£¬Ö±ÏßAMµÄ·½³ÌΪ$y=\frac{n}{m-3}£¨x-3£©$£¬Áîx=0£¬µÃyQ=$\frac{3n}{3-m}$£¬ËıßÐÎABPQµÄÃæ»ýΪ£ºSËıßÐÎABPQ=$\frac{1}{2}¡Á|AP|¡Á|BQ|$=$\frac{1}{2}¡Á£¨3-\frac{2m}{2-n}£©¡Á£¨2-\frac{3n}{3-m}£©$£¬ÓÉ´ËÄÜÖ¤Ã÷ËıßÐÎABPQµÄÃæ»ýΪ¶¨Öµ£®
½â´ð
½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊ$\frac{\sqrt{5}}{3}$£¬
F£¬AΪÍÖÔ²CµÄÓÒ½¹µãºÍÓÒ¶¥µã£¬B£¨0£¬b£©£¬ÇÒ$\frac{\sqrt{5}}{|OF|}$$+\frac{2}{|OA|}$=$\frac{12{e}^{2}}{|OB{|}^{2}}$£¬
¡à$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{5}}{3}}\\{\frac{\sqrt{5}}{c}+\frac{2}{a}=\frac{12¡Á£¨\frac{\sqrt{5}}{3}£©^{2}}{{b}^{2}}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬
½âµÃa=3£¬b=2£¬c=$\sqrt{5}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1£®
£¨2£©Ö¤Ã÷£º¡ßÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1£¬¡àA£¨3£¬0£©£¬B£¨0£¬2£©£¬
ÉèM£¨m£¬n£©£¬£¨m£¼0£¬n£¼0£©£¬Ôò$\frac{{m}^{2}}{9}+\frac{{n}^{2}}{4}$=1£¬¡à9n2+4m2=36£¬
Ö±ÏßBMµÄ·½³ÌΪ$y=\frac{n-2}{m}x+2$£¬Áîy=0£¬µÃxP=$\frac{2m}{2-n}$£¬
Ö±ÏßAMµÄ·½³ÌΪ$y=\frac{n}{m-3}£¨x-3£©$£¬Áîx=0£¬µÃyQ=$\frac{3n}{3-m}$£¬
¡àËıßÐÎABPQµÄÃæ»ýΪ£º
SËıßÐÎABPQ=$\frac{1}{2}¡Á|AP|¡Á|BQ|$
=$\frac{1}{2}¡Á£¨3-\frac{2m}{2-n}£©¡Á£¨2-\frac{3n}{3-m}£©$
=$\frac{1}{2}¡Á\frac{6-3n-2m}{2-n}¡Á\frac{6-2m-3n}{3-m}$
=$\frac{36+9{n}^{2}+4{m}^{2}-36n-24m+12mn}{12-6n-4m+2mn}$
=$\frac{72-36n-24m+12mn}{12-6n-4m+2mn}$=6£®
¡àËıßÐÎABPQµÄÃæ»ýΪ¶¨Öµ6£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éËıßÐεÄÃæ»ýΪ¶¨ÖµµÄÖ¤Ã÷£¬¿¼²éÍÖÔ²¡¢Ö±Ïß·½³ÌµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 40 | B£® | 80 | C£® | -32 | D£® | -80 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | µ±x£¾0ÇÒx¡Ù1ʱ£¬lgx$+\frac{1}{lgx}$¡Ý2 | B£® | 6$-x-\frac{4}{x}$µÄ×î´óÖµÊÇ2 | ||
| C£® | $\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$µÄ×îСֵÊÇ2 | D£® | µ±x¡Ê£¨0£¬¦Ð£©Ê±£¬sinx$+\frac{4}{sinx}$¡Ý5 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ½»µãÊý | ±ßÊý | ÇøÓòÊý | |
| £¨A£© | 4 | 5 | 2 |
| £¨B£© | 5 | 8 | |
| £¨C£© | 12 | 5 | |
| £¨D£© | 15 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¦Ð£¬0 | B£® | $\frac{¦Ð}{2}-\sqrt{2}\;£¬0$ | C£® | $¦Ð\;£¬\frac{¦Ð}{4}-1$ | D£® | $0\;£¬\;\frac{¦Ð}{4}-1$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com