4£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊ$\frac{\sqrt{5}}{3}$£¬F£¬AΪÍÖÔ²CµÄÓÒ½¹µãºÍÓÒ¶¥µã£¬B£¨0£¬b£©£¬ÇÒ$\frac{\sqrt{5}}{|OF|}$$+\frac{2}{|OA|}$=$\frac{12{e}^{2}}{|OB{|}^{2}}$
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèMÊǵÚÈýÏóÏÞÄÚÇÒÍÖÔ²ÉϵÄÒ»¸ö¶¯µã£¬Ö±ÏßMBÓëxÖá½»ÓÚµãP£¬Ö±ÏßMAÓëyÖá½»ÓÚµãQ£¬ÇóÖ¤£ºËıßÐÎABPQµÄÃæ»ýΪ¶¨Öµ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊ$\frac{\sqrt{5}}{3}$£¬F£¬AΪÍÖÔ²CµÄÓÒ½¹µãºÍÓÒ¶¥µã£¬B£¨0£¬b£©£¬ÇÒ$\frac{\sqrt{5}}{|OF|}$$+\frac{2}{|OA|}$=$\frac{12{e}^{2}}{|OB{|}^{2}}$£¬Áгö·½³Ì×飬Çó³öa=3£¬b=2£¬c=$\sqrt{5}$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©Çó³öA£¨3£¬0£©£¬B£¨0£¬2£©£¬ÉèM£¨m£¬n£©£¬£¨m£¼0£¬n£¼0£©£¬Ôò9n2+4m2=36£¬Ö±ÏßBMµÄ·½³ÌΪ$y=\frac{n-2}{m}x+2$£¬Áîy=0£¬µÃxP=$\frac{2m}{2-n}$£¬Ö±ÏßAMµÄ·½³ÌΪ$y=\frac{n}{m-3}£¨x-3£©$£¬Áîx=0£¬µÃyQ=$\frac{3n}{3-m}$£¬ËıßÐÎABPQµÄÃæ»ýΪ£ºSËıßÐÎABPQ=$\frac{1}{2}¡Á|AP|¡Á|BQ|$=$\frac{1}{2}¡Á£¨3-\frac{2m}{2-n}£©¡Á£¨2-\frac{3n}{3-m}£©$£¬ÓÉ´ËÄÜÖ¤Ã÷ËıßÐÎABPQµÄÃæ»ýΪ¶¨Öµ£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊ$\frac{\sqrt{5}}{3}$£¬
F£¬AΪÍÖÔ²CµÄÓÒ½¹µãºÍÓÒ¶¥µã£¬B£¨0£¬b£©£¬ÇÒ$\frac{\sqrt{5}}{|OF|}$$+\frac{2}{|OA|}$=$\frac{12{e}^{2}}{|OB{|}^{2}}$£¬
¡à$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{5}}{3}}\\{\frac{\sqrt{5}}{c}+\frac{2}{a}=\frac{12¡Á£¨\frac{\sqrt{5}}{3}£©^{2}}{{b}^{2}}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬
½âµÃa=3£¬b=2£¬c=$\sqrt{5}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1£®
£¨2£©Ö¤Ã÷£º¡ßÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1£¬¡àA£¨3£¬0£©£¬B£¨0£¬2£©£¬
ÉèM£¨m£¬n£©£¬£¨m£¼0£¬n£¼0£©£¬Ôò$\frac{{m}^{2}}{9}+\frac{{n}^{2}}{4}$=1£¬¡à9n2+4m2=36£¬
Ö±ÏßBMµÄ·½³ÌΪ$y=\frac{n-2}{m}x+2$£¬Áîy=0£¬µÃxP=$\frac{2m}{2-n}$£¬
Ö±ÏßAMµÄ·½³ÌΪ$y=\frac{n}{m-3}£¨x-3£©$£¬Áîx=0£¬µÃyQ=$\frac{3n}{3-m}$£¬
¡àËıßÐÎABPQµÄÃæ»ýΪ£º
SËıßÐÎABPQ=$\frac{1}{2}¡Á|AP|¡Á|BQ|$
=$\frac{1}{2}¡Á£¨3-\frac{2m}{2-n}£©¡Á£¨2-\frac{3n}{3-m}£©$
=$\frac{1}{2}¡Á\frac{6-3n-2m}{2-n}¡Á\frac{6-2m-3n}{3-m}$
=$\frac{36+9{n}^{2}+4{m}^{2}-36n-24m+12mn}{12-6n-4m+2mn}$
=$\frac{72-36n-24m+12mn}{12-6n-4m+2mn}$=6£®
¡àËıßÐÎABPQµÄÃæ»ýΪ¶¨Öµ6£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éËıßÐεÄÃæ»ýΪ¶¨ÖµµÄÖ¤Ã÷£¬¿¼²éÍÖÔ²¡¢Ö±Ïß·½³ÌµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖª${£¨{\frac{1}{{2\sqrt{x}}}+2x}£©^n}£¨n¡Ê{N^*}£©$Õ¹¿ªÊ½ÖеÚ6ÏîΪ³£Êý£®
£¨1£©ÇónµÄÖµ£»
£¨2£©ÇóÕ¹¿ªÊ½ÖÐϵÊý×î´óÏ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®£¨x-$\frac{2}{\sqrt{x}}$£©5µÄÕ¹¿ªÊ½ÖÐx2µÄϵÊýΪ£¨¡¡¡¡£©
A£®40B£®80C£®-32D£®-80

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®µ±x£¾0ÇÒx¡Ù1ʱ£¬lgx$+\frac{1}{lgx}$¡Ý2B£®6$-x-\frac{4}{x}$µÄ×î´óÖµÊÇ2
C£®$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$µÄ×îСֵÊÇ2D£®µ±x¡Ê£¨0£¬¦Ð£©Ê±£¬sinx$+\frac{4}{sinx}$¡Ý5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª¶þÏîʽ${£¨\sqrt{x}-\frac{2}{{\root{3}{x}}}£©^n}$µÄÕ¹¿ªÊ½ÖеÚËÄÏîΪ³£ÊýÏ
£¨1£©ÇónµÄÖµ£»
£¨2£©ÇóÕ¹¿ªÊ½µÄ¸÷ÏîϵÊý¾ø¶ÔÖµÖ®ºÍ£»
£¨3£©ÇóÕ¹¿ªÊ½ÖÐϵÊý×î´óµÄÏ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÏÂÃæ£¨A£©£¨B£©£¨C£©£¨D£©ÎªËĸöÆ½ÃæÍ¼ÐΣº
£¨1£©Êý³öÿ¸öÆ½ÃæÍ¼ÐεĽ»µãÊý¡¢±ßÊý¡¢ÇøÓòÊý£¬²¢½«ÏÂ±í²¹³äÍêÕû£º
  ½»µãÊý±ßÊý ÇøÓòÊý 
£¨A£©  4 5 2
 £¨B£© 5 8 
 £¨C£©  12 5
 £¨D£©  15 
£¨2£©¹Û²ì±í¸ñ£¬Èô¼ÇÒ»¸öÆ½ÃæÍ¼ÐεĽ»µãÊý¡¢±ßÊý¡¢ÇøÓòÊý·Ö±ðΪE¡¢F¡¢G£¬ÊÔ²ÂÏëE¡¢F¡¢GÖ®¼äµÄÊýÁ¿¹ØÏµ£¨²»ÒªÇóÖ¤Ã÷£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®º¯Êý$f£¨x£©=x-\sqrt{2}sinx$ÔÚÇø¼ä[0£¬¦Ð]ÉϵÄ×î´ó¡¢×îСֵ·Ö±ðΪ£¨¡¡¡¡£©
A£®¦Ð£¬0B£®$\frac{¦Ð}{2}-\sqrt{2}\;£¬0$C£®$¦Ð\;£¬\frac{¦Ð}{4}-1$D£®$0\;£¬\;\frac{¦Ð}{4}-1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚÖ±½Ç×ø±êϵxOy£¬ÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÆäÖÐF2Ò²ÊÇÅ×ÎïÏßC2£ºy2=4xµÄ½¹µã£¬µãMΪC1ÓëC2ÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬ÇÒ|MF2|=$\frac{5}{3}$
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©Èô¹ýµãD£¨4£¬0£©µÄÖ±ÏßlÓëC1½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬ÇÒAÔÚDBÖ®¼ä£¬ÊÔÇó¡÷AODÓë¡÷BODÃæ»ý±ÈÖµµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$¾­¹ýµã$P£¨2£¬\sqrt{2}£©$£¬Ò»¸ö½¹µãFµÄ×ø±êΪ£¨2£¬0£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl£ºy=kx+mÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬OÎª×ø±êÔ­µã£¬Èô${k_{OA}}•{k_{OB}}=-\frac{1}{2}$£¬Çó$\overrightarrow{OA}•\overrightarrow{OB}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸