14£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$¾­¹ýµã$P£¨2£¬\sqrt{2}£©$£¬Ò»¸ö½¹µãFµÄ×ø±êΪ£¨2£¬0£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl£ºy=kx+mÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬OÎª×ø±êÔ­µã£¬Èô${k_{OA}}•{k_{OB}}=-\frac{1}{2}$£¬Çó$\overrightarrow{OA}•\overrightarrow{OB}$µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÍÖÔ²¾­¹ýµã$P£¨2£¬\sqrt{2}£©$£¬Ò»¸ö½¹µãFµÄ×ø±êΪ£¨2£¬0£©£¬Áгö·½³Ì×飬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©$ÓÉ\left\{\begin{array}{l}y=kx+m\\{x^2}+2{y^2}=8\end{array}\right.µÃ£º£¨1+2{k^2}£©{x^2}+4kmx+2{m^2}-8=0$£¬ÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏòÁ¿µÄÊýÁ¿»ý£¬½áºÏÒÑÖªÌõ¼þ£¬ÄÜÇó³ö$\overrightarrow{OA}•\overrightarrow{OB}$µÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$¾­¹ýµã$P£¨2£¬\sqrt{2}£©$£¬Ò»¸ö½¹µãFµÄ×ø±êΪ£¨2£¬0£©£®
¡à$\left\{\begin{array}{l}{\frac{4}{{a}^{2}}+\frac{2}{{b}^{2}}=1}\\{c=2}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa=2$\sqrt{2}$£¬b=2£¬c=2£¬¡­£¨3·Ö£©
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1£®¡­£¨4·Ö£©
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
$ÓÉ\left\{\begin{array}{l}y=kx+m\\{x^2}+2{y^2}=8\end{array}\right.µÃ£º£¨1+2{k^2}£©{x^2}+4kmx+2{m^2}-8=0$¡­£¨5·Ö£©
¡÷=16k2m2-4£¨1+2k2£©£¨2m2-8£©=64k2-8m2+32£¾0£¬¼´m2£¼8k2+4¡­£¨6·Ö£©
${x}_{1}+{x}_{2}=-\frac{4km}{1+2{k}^{2}}$£¬x1x2=$\frac{2{m}^{2}-8}{1+2{k}^{2}}$£¬¡­£¨7·Ö£©
y1y2=k2x1x2+mk£¨x1+x2£©+m2=$\frac{2{k}^{2}{m}^{2}-8{k}^{2}}{1+2{k}^{2}}$-$\frac{4{k}^{2}{m}^{2}}{1+2{k}^{2}}$+m2=$\frac{{m}^{2}-8{k}^{2}}{1+2{{k}^{2}}_{\;}}$£¬¡­£¨8·Ö£©
¡ß${k_{OA}}•{k_{OB}}=-\frac{1}{2}$£¬
¡àkOA•kOB=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=$\frac{{m}^{2}-8{k}^{2}}{2{m}^{2}-8}$=-$\frac{1}{2}$£¬
¡à4m2-16k2=8£¬¼´m2=4k2+2£¬¹Ê4k2+2£¼8k2+4£¬
½âµÃk¡ÊR¡­£¨9·Ö£©
$\overrightarrow{OA}•\overrightarrow{OB}={x_1}{x_2}+{y_1}{y_2}=\frac{{2{m^2}-8}}{{1+2{k^2}}}+\frac{{{m^2}-8{k^2}}}{{1+2{k^2}}}=\frac{{3{m^2}-8{k^2}-8}}{{1+2{k^2}}}$=$\frac{{4{k^2}-2}}{{1+2{k^2}}}=2-\frac{4}{{2{k^2}+1}}$£¬¡­£¨11·Ö£©
$¹Ê\overrightarrow{OA}•\overrightarrow{OB}µÄȡֵ·¶Î§Îª[-2£¬2£©$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÏòÁ¿µÄÊýÁ¿»ýµÄȡֵ·¶Î§µÄÇ󷨣¬¿¼²éÍÖÔ²¡¢Ö±Ïß·½³Ì¡¢¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏòÁ¿µÄÊýÁ¿»ýµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓ뷽˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊ$\frac{\sqrt{5}}{3}$£¬F£¬AΪÍÖÔ²CµÄÓÒ½¹µãºÍÓÒ¶¥µã£¬B£¨0£¬b£©£¬ÇÒ$\frac{\sqrt{5}}{|OF|}$$+\frac{2}{|OA|}$=$\frac{12{e}^{2}}{|OB{|}^{2}}$
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèMÊǵÚÈýÏóÏÞÄÚÇÒÍÖÔ²ÉϵÄÒ»¸ö¶¯µã£¬Ö±ÏßMBÓëxÖá½»ÓÚµãP£¬Ö±ÏßMAÓëyÖá½»ÓÚµãQ£¬ÇóÖ¤£ºËıßÐÎABPQµÄÃæ»ýΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÆ½ÃæÏòÁ¿$\overrightarrow a=£¨1£¬x£©£¬\overrightarrow b=£¨2x+3£¬-x£©$  £¨x¡ÊN£©
£¨1£©Èô$\overrightarrow{a}$Óë$\overrightarrow{b}$´¹Ö±£¬Çóx£»
£¨2£©Èô$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬Çó|$\overrightarrow{a}$-$\overrightarrow{b}$|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Ëæ×ÅÍøÂçµÄ·¢Õ¹£¬ÈËÃÇ¿ÉÒÔÔÚÍøÂçÉϹºÎï¡¢ÍæÓÎÏ·¡¢ÁÄÌì¡¢µ¼º½µÈ£¬ËùÒÔÈËÃǶÔÉÏÍøÁ÷Á¿µÄÐèÇóÔ½À´Ô½´ó£®Ä³µçÐÅÔËÓªÉÌÍÆ³öÒ»¿îеġ°Á÷Á¿°ü¡±Ìײͣ®ÎªÁ˵÷²é²»Í¬ÄêÁäµÄÈËÊÇ·ñÔ¸ÒâÑ¡Ôñ´Ë¿î¡°Á÷Á¿°ü¡±Ìײͣ¬Ëæ»ú³éÈ¡50¸öÓû§£¬°´ÄêÁä·Ö×é½øÐзÃ̸£¬Í³¼Æ½á¹ûÈç±í£®
×éºÅÄêÁä·Ã̸ÈËÊýÔ¸ÒâʹÓÃ
1[18£¬28£©44
2[28£¬38£©99
3[38£¬48£©1615
4[48£¬58£©1512
5[58£¬68£©62
£¨¢ñ£©ÈôÔÚµÚ2¡¢3¡¢4×éÔ¸ÒâÑ¡Ôñ´Ë¿î¡°Á÷Á¿°ü¡±Ìײ͵ÄÈËÖУ¬Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡12ÈË£¬Ôò¸÷×éÓ¦·Ö±ð³éÈ¡¶àÉÙÈË£¿
£¨¢ò£©Èô´ÓµÚ5×éµÄ±»µ÷²éÕß·Ã̸ÈËÖÐËæ»úѡȡ2È˽øÐÐ×·×Ùµ÷²é£¬Çó2ÈËÖÐÖÁÉÙÓÐ1ÈËÔ¸ÒâÑ¡Ôñ´Ë¿î¡°Á÷Á¿°ü¡±Ìײ͵ĸÅÂÊ£®
£¨¢ó£©°´ÒÔÉÏͳ¼ÆÊý¾ÝÌîдÏÂÃæ2¡Á2ÁÐÁª±í£¬²¢ÅжÏÒÔ48ËêΪ·Ö½çµã£¬ÄÜ·ñÔÚ·¸´íÎó²»³¬¹ý1%µÄǰÌáÏÂÈÏΪ£¬ÊÇ·ñÔ¸ÒâÑ¡Ôñ´Ë¿î¡°Á÷Á¿°ü¡±ÌײÍÓëÈ˵ÄÄêÁäÓйأ¿
ÄêÁä²»µÍÓÚ48ËêµÄÈËÊýÄêÁäµÍÓÚ48ËêµÄÈËÊýºÏ¼Æ
Ô¸ÒâʹÓõÄÈËÊý
²»Ô¸ÒâʹÓõÄÈËÊý
ºÏ¼Æ
²Î¿¼¹«Ê½£º${k^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨d+b£©}$£¬ÆäÖУºn=a+b+c+d£®
P£¨k2¡Ýk0£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÉèʼþA±íʾ¡°¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+ax+b2=0ÓÐʵ¸ù¡±£¬ÆäÖÐa£¬bΪʵ³£Êý£®
£¨¢ñ£©ÈôaÎªÇø¼ä[0£¬5]ÉϵÄÕûÊýÖµËæ»úÊý£¬bÎªÇø¼ä[0£¬2]ÉϵÄÕûÊýÖµËæ»úÊý£¬ÇóʼþA·¢ÉúµÄ¸ÅÂÊ£»
£¨¢ò£©ÈôaÎªÇø¼ä[0£¬5]ÉϵľùÔÈËæ»úÊý£¬bÎªÇø¼ä[0£¬2]ÉϵľùÔÈËæ»úÊý£¬ÇóʼþA·¢ÉúµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Ö±Ïß$\left\{\begin{array}{l}{x=4t}\\{y=-3+3t}\end{array}\right.$£¨tΪ²ÎÊý£©ÓëÔ²$\left\{\begin{array}{l}{x=2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©µÄλÖùØÏµÊÇÏàÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=$\left\{{\begin{array}{l}{-x+4£¬x¡Ü2}\\{{a^x}+2a+1£¬x£¾2}\end{array}}$£¬ÆäÖÐa£¾0ÇÒa¡Ù1£®Èôa=$\frac{1}{2}$ʱ·½³Ìf£¨x£©=bÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬ÔòʵÊýbµÄȡֵ·¶Î§ÊÇ£¨2£¬$\frac{9}{4}$£©£»Èôf£¨x£©µÄÖµÓòΪ[2£¬+¡Þ£©£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[$\frac{1}{2}$£¬1£©¡È£¨1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÈôÉÈÐεİ뾶Ϊ6cm£¬Ëù¶ÔµÄ»¡³¤Îª2¦Ðcm£¬ÔòÕâ¸öÉÈÐεÄÃæ»ýÊÇ£¨¡¡¡¡£©
A£®12¦Ðcm2B£®6 cm2C£®6¦Ðcm2D£®4 cm2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èôa1£¬a2£¬a3£¬¡­£¬an¾ùΪÕýÊý£¬ÔòÓÐ
¶þÔª¾ùÖµ²»µÈʽ£º${a_1}+{a_2}¡Ý2\sqrt{{a_1}•{a_2}}$£¬µ±ÇÒ½öµ±a1=a2ʱȡµÈºÅ£»
ÈýÔª¾ùÖµ²»µÈʽ£º${a_1}+{a_2}+{a_3}¡Ý3\root{3}{{{a_1}•{a_2}•{a_3}}}$£¬µ±ÇÒ½öµ±a1=a2=a3ʱȡµÈºÅ£»
ËÄÔª¾ùÖµ²»µÈʽ£º${a_1}+{a_2}+{a_3}+{a_4}¡Ý4\root{4}{{{a_1}•{a_2}•{a_3}•{a_4}}}$£¬µ±ÇÒ½öµ±a1=a2=a3=a4ʱȡµÈºÅ£®
£¨1£©²ÂÏënÔª¾ùÖµ²»µÈʽ£»
£¨2£©Èôx£¬y£¬z¾ùΪÕýÊý£¬ÇÒx+y+z=6£¬ÇóxyzµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸