精英家教网 > 高中数学 > 题目详情
11.已知a>0,b>0,a+b=1,则$\frac{1}{a}$+$\frac{4}{b}$的最小值是(  )
A.4B.5C.8D.9

分析 结合乘“1”法,通过基本不等式求解最值即可.

解答 解:∵a>0,b>0,a+b=1,
∴$\frac{1}{a}$+$\frac{4}{b}$=($\frac{1}{a}$+$\frac{4}{b}$)(a+b)=5+$\frac{b}{a}$+$\frac{4a}{b}$≥5+2 $\sqrt{\frac{b}{a}•\frac{4a}{b}}$=9,
当且仅当b=2a=$\frac{2}{3}$时取等号.
故选:9.

点评 本题考查了乘“1”法在基本不等式的应用,考查基本不等式的性质以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如表:
年     份2008200920102011201220132014
年份代号t1234567
人均纯收入y2.73.63.34.65.45.76.2
对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.
(1)求y关于t的线性回归方程;
(2)预测该地区2017年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若a-b>0,下列不等式一定成立的个数是(  )
(1)$\frac{1}{a}<\frac{1}{b}$(2)$\frac{b}{a}<1$(3)2a-b>1(4)ln(a-b)>0.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知回归方程为:$\widehat{y}$=3-2x,若解释变量增加1个单位,则预报变量平均(  )
A.增加2个单位B.减少2个单位C.增加3个单位D.减少3个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,点P是边长为1的正六边形ABCDEF的边上的一个动点,设$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AE}$,则x+y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x,y均为正数,且x+y=2,则x+4$\sqrt{xy}$+4y的最大值是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-2ax+2b
(1)若a,b都是从0,1,2,3四个数中任意取的一个数,求函数f(x)有零点的概率;
(2)若a,b都是从区间[0,3]中任取的一个数,求f(1)<0成立时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的通项公式${a_n}=(n+2)•{(\frac{3}{4})^n}$,则数列{an}的项取最大值时,n=1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知一个等比数列首项为1,项数是偶数,其奇数项之和为341,偶数项之和为682,则这个数列的项数为(  )
A.4B.6C.8D.10

查看答案和解析>>

同步练习册答案