分析 设六边形边长为1,把向量$\overrightarrow{AB}$,和向量$\overrightarrow{AE}$,沿着AD方向和垂直于AD两个方向分解.设AD方向为x轴,垂直于AD方向为y轴距离坐标系,得到$\overrightarrow{AP}$的坐标,分析x+y取最大值时P的位置.
解答
解:六边形边长为1,把向量$\overrightarrow{AB}$和向量$\overrightarrow{AE}$,沿着AD方向和垂直于AD两个方向分解.
设AD方向为x轴,垂直于AD方向为y轴如图:
那么$\overrightarrow{AB}$=$\overrightarrow{OC}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{AE}=\overrightarrow{AO}+\overrightarrow{OE}$
=(-$\frac{1}{2}$,-1-$\frac{\sqrt{3}}{2}$),
$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AE}$=(-$\frac{1}{2}$x-$\frac{1}{2}$y,$\frac{\sqrt{3}}{2}$x-(1+$\frac{\sqrt{3}}{2}$)y),
所以,当$\overrightarrow{AP}$的横坐标最小的时候,x+y最大.
那么,当P与D重合时,满足这一条件.
此时AP=2,x+y=2;最大值为2;
故答案为:2.
点评 本题考查了平面向量的坐标运算;关键是适当建立坐标系,得到向量的坐标.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-1)2(y-1)=1(y<1) | B. | y=$\frac{x(x-2)}{(x-1)^{2}}$(x≠1) | C. | y=$\frac{1}{1-{x}^{2}}$-1(y<1) | D. | y=$\frac{x}{1-{x}^{2}}$-1(y<1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | π | D. | 2π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π,0 | B. | $\frac{π}{2}-\sqrt{2}\;,0$ | C. | $π\;,\frac{π}{4}-1$ | D. | $0\;,\;\frac{π}{4}-1$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com