精英家教网 > 高中数学 > 题目详情
1.曲线的参数方程是$\left\{\begin{array}{l}{x=1-\frac{1}{t}}\\{y=1-{t}^{2}}\end{array}\right.$(t是参数,t≠0),它的普通方程是(  )
A.(x-1)2(y-1)=1(y<1)B.y=$\frac{x(x-2)}{(x-1)^{2}}$(x≠1)C.y=$\frac{1}{1-{x}^{2}}$-1(y<1)D.y=$\frac{x}{1-{x}^{2}}$-1(y<1)

分析 曲线的参数方程消去参数,能求出曲线的普通方程.

解答 解:∵曲线的参数方程是$\left\{\begin{array}{l}{x=1-\frac{1}{t}}\\{y=1-{t}^{2}}\end{array}\right.$(t是参数,t≠0),
∴消去参数,得曲线的普通方程为:
y=1-($\frac{1}{1-x}$)2=$\frac{x(x-2)}{(x-1)^{2}}$(x≠1).
故选:B.

点评 本题考查曲线的参数方程继普通方程的求法,考查参数方程、直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.直线l经过原点O和点P(1,1),则其斜率为(  )
A.1B.-1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知两个不同的动点A,B在椭圆$\frac{y^2}{8}+\frac{x^2}{4}=1$上,且线段AB的垂直平分线恒过点P(0,-1).求:(Ⅰ)线段AB中点M的轨迹方程;
(Ⅱ)线段AB长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设$m=\int_{-1}^{1}{(3{x^2}}+sinx)dx$,则(x-$\frac{m}{x}$)6的展开式中的常数项为-160.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.把数列{2n+1}(n∈N*)依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,…循环,分别:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),…,则第120个括号内各数之和为(  )
A.2312B.2392C.2472D.2544

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,点P是边长为1的正六边形ABCDEF的边上的一个动点,设$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AE}$,则x+y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$y=x+\frac{1}{4x}({x>0})$取得最小值时,x的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若x,y且x+y>2,则$\frac{1+y}{x}$和$\frac{1+x}{y}$的值满足(  )
A.$\frac{1+y}{x}$和$\frac{1+x}{y}$都大于2B.$\frac{1+y}{x}$和$\frac{1+x}{y}$都小于2
C.$\frac{1+y}{x}$和$\frac{1+x}{y}$中至少有一个小于2D.以上说法都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.等差数列{an}的前n项和为Sn,已知a19+2a20+a21=4,则S39=(  )
A.38B.39C.20D.19

查看答案和解析>>

同步练习册答案