精英家教网 > 高中数学 > 题目详情
9.设$m=\int_{-1}^{1}{(3{x^2}}+sinx)dx$,则(x-$\frac{m}{x}$)6的展开式中的常数项为-160.

分析 利用定积分求出m=2,从而${T}_{r+1}={C}_{6}^{r}{x}^{6-r}(-\frac{2}{x})^{r}$=(-2)r${C}_{6}^{r}$x6-2r,令6-2r=0,得r=3,由此能求出(x-$\frac{m}{x}$)6的展开式中的常数项.

解答 解:∵$m=\int_{-1}^{1}{(3{x^2}}+sinx)dx$
=(x3-cosx)${|}_{-1}^{1}$=(1-cos1)-(-1-cos(-1))=2,
∴(x-$\frac{m}{x}$)6即$(x-\frac{2}{x})^{6}$,
∴${T}_{r+1}={C}_{6}^{r}{x}^{6-r}(-\frac{2}{x})^{r}$
=(-2)r${C}_{6}^{r}$x6-2r
令6-2r=0,得r=3,
∴(x-$\frac{m}{x}$)6的展开式中的常数项为:$(-2)^{3}{C}_{6}^{3}$=-160.
故答案为:-160.

点评 本题考查定积分的求法,考查二项展开式中常数项的求法,考查二项式定理、排列组合等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x3+ax2-x+c(x∈R),下列结论错误的是(  )
A.函数f(x)一定存在极大值和极小值
B.函数f(x)在点(x0,f(x0))(x0∈R)处的切线与f(x)的图象必有两个不同的公共点
C.函数f(x)的图象是中心对称图形
D.若函数f(x)在(-8,x1),(x2,+8)上是增函数,则x2-x1=$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$\overrightarrow{AM}=α\overrightarrow{AB}+β\overrightarrow{AC}$,则△ABM 与△ACM 的面积的比值为β:α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列{an}满足:an=$\left\{\begin{array}{l}{(3-a)n-3,}&{n≤7}\\{{a}^{{n-6}_{,}}}&{n>7}\end{array}\right.$,且{an}是递增数列,则实数a的取值范围是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若b>a>1且3logab+6logba=11,则${a^3}+\frac{2}{b-1}$的最小值为$2\sqrt{2}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知${({\frac{1}{{2\sqrt{x}}}+2x})^n}(n∈{N^*})$展开式中第6项为常数.
(1)求n的值;
(2)求展开式中系数最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线的参数方程是$\left\{\begin{array}{l}{x=1-\frac{1}{t}}\\{y=1-{t}^{2}}\end{array}\right.$(t是参数,t≠0),它的普通方程是(  )
A.(x-1)2(y-1)=1(y<1)B.y=$\frac{x(x-2)}{(x-1)^{2}}$(x≠1)C.y=$\frac{1}{1-{x}^{2}}$-1(y<1)D.y=$\frac{x}{1-{x}^{2}}$-1(y<1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线x=$\frac{π}{2}$,x=$\frac{3π}{2}$,y=0及曲线y=cosx所围成图形的面积是(  )
A.2B.3C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二项式${(\sqrt{x}-\frac{2}{{\root{3}{x}}})^n}$的展开式中第四项为常数项.
(1)求n的值;
(2)求展开式的各项系数绝对值之和;
(3)求展开式中系数最大的项.

查看答案和解析>>

同步练习册答案