精英家教网 > 高中数学 > 题目详情
4.若b>a>1且3logab+6logba=11,则${a^3}+\frac{2}{b-1}$的最小值为$2\sqrt{2}+1$.

分析 根据对数的运算,求出a3=b,根据基本不等式的性质求出其最小值即可.

解答 解:∵3logab+6logba=11,
∴(3logab-2)(logab-3)=0,
∵b>a>1,
∴logab=3,a3=b,
∴${a^3}+\frac{2}{b-1}$
=b-1+$\frac{2}{b-1}$+1
≥2$\sqrt{(b-1)•\frac{2}{b-1}}$+1
=2$\sqrt{2}$+1,
故答案为:2$\sqrt{2}$+1.

点评 本题考查了对数的运算性质,考查基本不等式的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知$cos(θ+\frac{π}{4})=\frac{3}{5}$,其中θ为锐角﹒
(1)求tanθ的值;
(2)求$\frac{{{{cos}^2}θ+sin2θ}}{{{{sin}^2}θ+1}}$的值﹒

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}中,a4+a6=8,则a3+a4+a5+a6+a7=(  )
A.10B.16C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知两个不同的动点A,B在椭圆$\frac{y^2}{8}+\frac{x^2}{4}=1$上,且线段AB的垂直平分线恒过点P(0,-1).求:(Ⅰ)线段AB中点M的轨迹方程;
(Ⅱ)线段AB长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=sin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)满足$f(x+\frac{π}{2})=-f(x)$,若其图象向左平移$\frac{π}{6}$个单位后得到的函数为奇函数,则f(x)的解析式可以为(  )
A.$f(x)=sin(2x+\frac{π}{6})$B.$f(x)=sin(2x-\frac{π}{6})$C.$f(x)=sin(2x+\frac{π}{3})$D.$f(x)=sin(2x-\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设$m=\int_{-1}^{1}{(3{x^2}}+sinx)dx$,则(x-$\frac{m}{x}$)6的展开式中的常数项为-160.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.把数列{2n+1}(n∈N*)依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,…循环,分别:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),…,则第120个括号内各数之和为(  )
A.2312B.2392C.2472D.2544

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$y=x+\frac{1}{4x}({x>0})$取得最小值时,x的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在[-5,5]上随机的取一个数a,则事件“不等式x2+ax+a≥0对任意实数x恒成立”发生的概率为$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案