分析 (1)利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得tanθ的值;
(2)利用同角三角函数的基本关系,二倍角公式,求得$\frac{{{{cos}^2}θ+sin2θ}}{{{{sin}^2}θ+1}}$的值﹒
解答 解:(1)∵θ为锐角,$cos(θ+\frac{π}{4})=\frac{3}{5}$,∴$θ+\frac{π}{4}∈({\frac{π}{4},\frac{3π}{4}})$,∴$sin(θ+\frac{π}{4})=\frac{4}{5}$,$tan(θ+\frac{π}{4})=\frac{4}{3}$.
∴$tanθ=tan[{(θ+\frac{π}{4})-\frac{π}{4}}]=\frac{{tan(θ+\frac{π}{4})-tan\frac{π}{4}}}{{1+tan(θ+\frac{π}{4})•tan\frac{π}{4}}}=\frac{1}{7}$.
(2)$\frac{{{{cos}^2}θ+sin2θ}}{{{{sin}^2}θ+1}}$=$\frac{{{{cos}^2}θ+2sinθ•cosθ}}{{2{{sin}^2}θ+{{cos}^2}θ}}=\frac{2tanθ+1}{{2{{tan}^2}θ+1}}=\frac{21}{17}$.
点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号、二倍角公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 直线x+2y-2=0 | B. | 以(2,0)为端点的射线 | ||
| C. | 圆(x-1)2+y2=1 | D. | 以(2,0)和(0,1)为端点的线段 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 20 | C. | 21 | D. | 42 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)一定存在极大值和极小值 | |
| B. | 函数f(x)在点(x0,f(x0))(x0∈R)处的切线与f(x)的图象必有两个不同的公共点 | |
| C. | 函数f(x)的图象是中心对称图形 | |
| D. | 若函数f(x)在(-8,x1),(x2,+8)上是增函数,则x2-x1=$\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -7<a<24 | B. | -24<a<7 | C. | a<-1或a>24 | D. | a<-24或a>7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 20x3 | C. | 105 | D. | 105x4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com