精英家教网 > 高中数学 > 题目详情
14.若曲线$\left\{\begin{array}{l}{x=1+cos2θ}\\{y=si{n}^{2}θ}\end{array}\right.$(θ为参数),则点(x,y)的轨迹是(  )
A.直线x+2y-2=0B.以(2,0)为端点的射线
C.圆(x-1)2+y2=1D.以(2,0)和(0,1)为端点的线段

分析 推导出$\left\{\begin{array}{l}{x=2co{s}^{2}θ}\\{y=si{n}^{2}θ}\end{array}\right.$,(θ为参数),消去参数θ,得:x+2y-2=0,(0≤x≤2),由此能求出结果.

解答 解:∵曲线$\left\{\begin{array}{l}{x=1+cos2θ}\\{y=si{n}^{2}θ}\end{array}\right.$(θ为参数),
∴$\left\{\begin{array}{l}{x=2co{s}^{2}θ}\\{y=si{n}^{2}θ}\end{array}\right.$,(θ为参数),
消去参数θ,得:x=2(1-y),即x+2y-2=0,(0≤x≤2),
∴点(x,y)的轨迹是以(2,0)和(0,1)为端点的线段.
故选:D.

点评 本题考查点的轨迹的求法,考查参数方程、直角坐标方程的互化、三角函数性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设y=f(x)为定义在R上的可导函数,定义运算⊕和?如下:对任意m,n∈R均有m⊕n=|f(m)|•n;m?n=f'(m)+n.若存在a∈R,使得对于任意x∈R,恒有a⊕x=a?x=x成立,则称实数a为函数的基元,则下列函数中恰有两个基元的是(  )
A.f(x)=x2+1B.$f(x)=\frac{1}{2}({x^3}-3x)$C.f(x)=2x3+3x2D.f(x)=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.从点(2,3)射出的光线沿斜率k=$\frac{1}{2}$的方向射到y轴上,则反射光线所在的直线方程为(  )
A.x+2y-4=0B.2x+y-1=0C.x+6y-16=0D.6x+y-8=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在平面直角坐标系xOy中,已知点A(2a,0)(a>0),直线l1:mx-y-2m+2=0与直线l2:x+my=0(m∈R)相交于点M,且MA2+MO2=2a2+16,则实数a的取值范围是[2,1+$\sqrt{17}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(x-1)ex
(Ⅰ)求f(x)的单调区间;
(Ⅱ)证明:当a>0时,方程f(x)=a在区间(1,+∞)上只有一个解;
(Ⅲ)设h(x)=f(x)-aln(x-1)-ax,其中a>0.若h(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=x-lnx的单调递减区间是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对于命题P:存在一个常数M,使得不等式$\frac{a}{2a+b}+\frac{b}{2b+a}≤M≤\frac{a}{a+2b}+\frac{b}{b+2a}$对任意正数a,b恒成立.
(1)试给出这个常数M的值;
(2)在(1)所得结论的条件下证明命题P;
(3)对于上述命题,某同学正确地猜想了命题Q:“存在一个常数M,使得不等式$\frac{a}{3a+b}+\frac{b}{3b+c}+\frac{c}{3c+a}≤M≤\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}$对任意正数a,b,c恒成立.”观察命题P与命题Q的规律,请猜想与正数a,b,c,d相关的命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$cos(θ+\frac{π}{4})=\frac{3}{5}$,其中θ为锐角﹒
(1)求tanθ的值;
(2)求$\frac{{{{cos}^2}θ+sin2θ}}{{{{sin}^2}θ+1}}$的值﹒

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}中,a4+a6=8,则a3+a4+a5+a6+a7=(  )
A.10B.16C.20D.24

查看答案和解析>>

同步练习册答案