精英家教网 > 高中数学 > 题目详情
5.从点(2,3)射出的光线沿斜率k=$\frac{1}{2}$的方向射到y轴上,则反射光线所在的直线方程为(  )
A.x+2y-4=0B.2x+y-1=0C.x+6y-16=0D.6x+y-8=0

分析 用点斜式求出入射光线方程,求出入射光线与反射轴y轴交点的坐标,再利用(2,3)关于y轴对称点(-2,3),在反射光线上,点斜式求出反射光线所在直线方程,并化为一般式.

解答 解:由题意得,射出的光线方程为y-3=$\frac{1}{2}$(x-2),即x-2y+4=0,与y轴交点为(0,2),
又(2,3)关于y轴对称点为(-2,3),
∴反射光线所在直线过(0,2),(-2,3),
故方程为y-2=$\frac{3-2}{-2}$(x-0),即 x+2y-4=0.
故选:A.

点评 本题考查用点斜式求直线方程的方法,入射光线上的一个点关于反射轴的对称点在反射光线上,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.矩形区域 ABCD 中,AB 长为 2 千米,BC 长为 1 千米,在 A 点和 C 点处各有一个通信基站,其覆盖范围均为方圆 1 千米,若在该矩形区域内随意选取一地点,则该地点无信号的概率为1-$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线$l:\sqrt{3}x+y-2\sqrt{3}=0$与圆C:x2+y2=4相交于A,B两点.
(1)求|AB|;
(2)求弦AB所对圆心角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四个条件中,使a>b成立的必要而不充分的条件是(  )
A.a>b-1B.a>b+1C.|a|>|b|D.2a>2b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-m|+|x|(m∈R)
(1)若f(1)=1,解关于x的不等式f(x)<2
(2)若f(x)≥m2对任意实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=loga($\frac{1-x}{b+x}$)(0<a<1,b>0)为奇函数,当x∈(-1,a]时,函数y=f(x)的值域是(-∞,1].
(1)确定b的值;
(2)证明函数y=f(x)在定义域上单调递增,并求a的值;
(3)若对于任意的t∈R,不等式f(t2-2t)+f(2t2-k)>0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若集合P={1,2,4,m},Q={2,m2},满足P∪Q={1,2,4,m},则实数m的值为-2,-1,0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若曲线$\left\{\begin{array}{l}{x=1+cos2θ}\\{y=si{n}^{2}θ}\end{array}\right.$(θ为参数),则点(x,y)的轨迹是(  )
A.直线x+2y-2=0B.以(2,0)为端点的射线
C.圆(x-1)2+y2=1D.以(2,0)和(0,1)为端点的线段

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,则a的取值范围是(  )
A.-7<a<24B.-24<a<7C.a<-1或a>24D.a<-24或a>7

查看答案和解析>>

同步练习册答案