精英家教网 > 高中数学 > 题目详情
12.矩形区域 ABCD 中,AB 长为 2 千米,BC 长为 1 千米,在 A 点和 C 点处各有一个通信基站,其覆盖范围均为方圆 1 千米,若在该矩形区域内随意选取一地点,则该地点无信号的概率为1-$\frac{π}{4}$.

分析 根据题意,算出扇形区域ADE和扇形区域CBF的面积之和为$\frac{π}{2}$,结合矩形ABCD的面积为2,可得在矩形ABCD内且没有信号的区域面积为2-$\frac{π}{2}$,再用几何概型计算公式即可算出所求的概率.

解答 解:∵如图,扇形ADE的半径为1,圆心角等于90°,
∴扇形ADE的面积为S1=$\frac{1}{4}$×π×12=$\frac{π}{4}$,
同理可得,扇形CBF的在,面积S2=$\frac{π}{4}$,
又∵长方形ABCD的面积S=2×1=2,
∴在该矩形区域内随机地选一地点,则该地点无信号的概率是P=$\frac{2-\frac{π}{2}}{2}$=1-$\frac{π}{4}$,
故答案为:1-$\frac{π}{4}$.

点评 本题着重考查了几何概型及其计算方法的知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列说法正确的是(  )
A.若直线l1与l2斜率相等,则l1∥l2
B.若直线l1∥l2,则k1=k2
C.若直线l1,l2的斜率不存在,则l1∥l2
D.若两条直线的斜率不相等,则两直线不平行

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,圆O:x2+y2=16内的正弦曲线y=sinx,x∈[-π,π]与x轴围成的区域记为M(图中阴影部分),随机向圆O内投一个点P,记A表示事件“点P落在一象限”,B表示事件“点P落在区域M内”,则概率P(B|A)=$\frac{1}{2π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l经过直线l1:2x-y-1=0与直线l2:x+2y-3=0的交点P,且与直线l3:x-y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆C:(x-a)2+y2=8相交于P,Q两点,且$|PQ|=2\sqrt{6}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1与x轴交于A、B两点,过椭圆上一点P(x0,y0)(P不与A、B重合)的切线l的方程为$\frac{{x}_{0}x}{9}$+$\frac{{y}_{0}y}{4}$=1,过点A、B且垂直于x轴的垂线分别与l交于C、D两点,设CB、AD交于点Q,则点Q的轨迹方程为$\frac{{x}^{2}}{9}$+y2=1(x≠±3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x,y的值如表所示,如果y与x呈线性相关且回归直线方程为$\widehat{y}$=$\widehat{b}$x+2,则$\widehat{b}$=(  )
x234
y546
A.3B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若对任意实数x,不等式|x-a|+|2x-1|≥2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设y=f(x)为定义在R上的可导函数,定义运算⊕和?如下:对任意m,n∈R均有m⊕n=|f(m)|•n;m?n=f'(m)+n.若存在a∈R,使得对于任意x∈R,恒有a⊕x=a?x=x成立,则称实数a为函数的基元,则下列函数中恰有两个基元的是(  )
A.f(x)=x2+1B.$f(x)=\frac{1}{2}({x^3}-3x)$C.f(x)=2x3+3x2D.f(x)=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.从点(2,3)射出的光线沿斜率k=$\frac{1}{2}$的方向射到y轴上,则反射光线所在的直线方程为(  )
A.x+2y-4=0B.2x+y-1=0C.x+6y-16=0D.6x+y-8=0

查看答案和解析>>

同步练习册答案