精英家教网 > 高中数学 > 题目详情
4.设y=f(x)为定义在R上的可导函数,定义运算⊕和?如下:对任意m,n∈R均有m⊕n=|f(m)|•n;m?n=f'(m)+n.若存在a∈R,使得对于任意x∈R,恒有a⊕x=a?x=x成立,则称实数a为函数的基元,则下列函数中恰有两个基元的是(  )
A.f(x)=x2+1B.$f(x)=\frac{1}{2}({x^3}-3x)$C.f(x)=2x3+3x2D.f(x)=cosx

分析 分别求出四个函数的导数,由新定义可得含a的方程,求得a的值,检验|f(a)|=1是否成立,即可得到结论.

解答 解:对于A,f(x)=x2+1的导数为f′(x)=2x,由a⊕x=a?x=x,可得|f(a)|•x=2a+x=x,
可得a=0,此函数只有一个基元;
对于B,f(x)=$\frac{1}{2}$(x3-3x)的导数为f′(x)=$\frac{1}{2}$(3x2-3),由a⊕x=a?x=x,
可得|f(a)|•x=$\frac{1}{2}$(3a2-3)+x=x,
可得a=±1,且|f(±1)|=1恒成立,此函数恰有两个基元;
对于C,f(x)=2x3+3x2的导数为f′(x)=6x2+6x,由a⊕x=a?x=x,
可得|f(a)|•x=(6a2+6a)+x=x,
可得a=0或-1,|f(1)|=5,|f(0)|=0不恒成立,此函数没有基元;
对于B,f(x)=cosx的导数为f′(x)=-sinx,由a⊕x=a?x=x,
可得|f(a)|•x=-sina+x=x,
可得a=kπ,k∈Z,且|f(kπ)|=1恒成立,此函数由无穷多个基元.
故选:B.

点评 本题考查新定义的理解和运用,考查导数的运用,以及恒成立思想的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=alnx-x2
(1)当a=2时,求函数y=f(x)在[$\frac{1}{2}$,2]上的最大值;
(2)令g(x)=f(x)+ax,若y=g(x)在区间(0,3)上为单调递增函数,求a的取值范围;
(3)当a=2时,函数h(x)=f(x)-mx的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,又h′(x)是h(x)的导函数.若正常数α,β满足条件α+β=1,β≥α.证明:h'(αx1+βx2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.矩形区域 ABCD 中,AB 长为 2 千米,BC 长为 1 千米,在 A 点和 C 点处各有一个通信基站,其覆盖范围均为方圆 1 千米,若在该矩形区域内随意选取一地点,则该地点无信号的概率为1-$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线 $\left\{\begin{array}{l}{x=3-t}\\{y=4+t}\end{array}\right.$,(t 为参数)上与点 P(3,4)的距离等于 $\sqrt{2}$的点的坐标是(  )
A.(4,3)B.(-4,5)或 (0,1)C.(2,5)D.(4,3)或 (2,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平面直角坐标系中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+s}\\{y=1-s}\end{array}\right.$(s为参数),曲线C的参数方程为$\left\{\begin{array}{l}{x=t+2}\\{y={t}^{2}}\end{array}\right.$(t为参数),若直线l与曲线C相交于A,B两点,则|AB|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知(x+2)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N*).
(1)试求a0和Sn=$\sum_{i=1}^{n}$ai
(2)试比较Sn与(n-2)3n+2n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线$l:\sqrt{3}x+y-2\sqrt{3}=0$与圆C:x2+y2=4相交于A,B两点.
(1)求|AB|;
(2)求弦AB所对圆心角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四个条件中,使a>b成立的必要而不充分的条件是(  )
A.a>b-1B.a>b+1C.|a|>|b|D.2a>2b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若曲线$\left\{\begin{array}{l}{x=1+cos2θ}\\{y=si{n}^{2}θ}\end{array}\right.$(θ为参数),则点(x,y)的轨迹是(  )
A.直线x+2y-2=0B.以(2,0)为端点的射线
C.圆(x-1)2+y2=1D.以(2,0)和(0,1)为端点的线段

查看答案和解析>>

同步练习册答案